Invariant subspaces for Bishop operators and beyond
| dc.contributor.author | Chamizo, Fernando | |
| dc.contributor.author | Gallardo Gutiérrez, Eva Antonia | |
| dc.contributor.author | Monsalve López, Miguel | |
| dc.contributor.author | Ubis, Adrián | |
| dc.date.accessioned | 2025-12-15T17:46:37Z | |
| dc.date.available | 2025-12-15T17:46:37Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | Bishop operators $T_\alpha$ acting on $L^2[0,1)$ were proposed by E. Bishop in the fifties as possible operators which might entail counterexamples for the Invariant Subspace Problem. We prove that all the Bishop operators are biquasitriangular and, derive as a consequence that they are norm limits of nilpotent operators. Moreover, by means of arithmetical techniques along with a theorem of Atzmon, the set of irrationals $\alpha \in (0,1)$ for which $T_\alpha$ is known to possess non-trivial closed invariant subspaces is considerably enlarged, extending previous results by Davie [11], MacDonald [21] and Flattot [14]. Furthermore, we essentially show that when our approach fails to produce invariant subspaces it is actually because Atzmon's Theorem cannot be applied. Finally, upon applying arithmetical bounds obtained, we deduce local spectral properties of Bishop operators proving, in particular, that neither of them satisfy Dunford's property (C). | |
| dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Ministerio de Ciencia e Innovación | |
| dc.description.sponsorship | Universidad Complutense de Madrid | |
| dc.description.status | pub | |
| dc.identifier.citation | Chamizo , F., Gallardo-Gutiérrez, E. A., Monsalve-López, M., Ubis, A. Invariant subspaces for Bishop operators and beyond. Adv. Math. 375, 107365 (2020) | |
| dc.identifier.doi | 10.1016/j.aim.2020.107365 | |
| dc.identifier.officialurl | https://doi.org/10.1016/j.aim.2020.107365 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/129026 | |
| dc.journal.title | Advances in Mathematics | |
| dc.language.iso | eng | |
| dc.page.initial | 107365 (25) | |
| dc.publisher | Elsevier | |
| dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83496-P/ES/ARITMETICA Y ANALISIS ARMONICO/ | |
| dc.relation.projectID | MTM2016-77710-P | |
| dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105979GB-I00/ES/OPERADORES Y GEOMETRIA EN ANALISIS MATEMATICO/ | |
| dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2015-0554/ES/INSTITUTO DE CIENCIAS MATEMATICAS/ | |
| dc.relation.projectID | 20205CEX001 | |
| dc.relation.projectID | CT27/16 | |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
| dc.rights.accessRights | open access | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject.keyword | Bishop operators | |
| dc.subject.keyword | Invariant subspace problem | |
| dc.subject.keyword | Dunford’s property (C) | |
| dc.subject.ucm | Análisis funcional y teoría de operadores | |
| dc.subject.ucm | Teoría de números | |
| dc.subject.unesco | 1202.03 Álgebra y Espacios de Banach | |
| dc.subject.unesco | 1205.03 Problemas Diofánticos | |
| dc.subject.unesco | 1202.14 Espacio de Hilbert | |
| dc.title | Invariant subspaces for Bishop operators and beyond | |
| dc.type | journal article | |
| dc.type.hasVersion | SMUR | |
| dc.volume.number | 375 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | f56f1f11-4b62-4a87-80df-8dc195da1201 | |
| relation.isAuthorOfPublication | ad0743b3-acba-486c-96d9-2dabcc51cda8 | |
| relation.isAuthorOfPublication.latestForDiscovery | ad0743b3-acba-486c-96d9-2dabcc51cda8 |
Download
Original bundle
1 - 1 of 1


