Invariant subspaces for Bishop operators and beyond

dc.contributor.authorChamizo, Fernando
dc.contributor.authorGallardo Gutiérrez, Eva Antonia
dc.contributor.authorMonsalve López, Miguel
dc.contributor.authorUbis, Adrián
dc.date.accessioned2025-12-15T17:46:37Z
dc.date.available2025-12-15T17:46:37Z
dc.date.issued2020
dc.description.abstractBishop operators $T_\alpha$ acting on $L^2[0,1)$ were proposed by E. Bishop in the fifties as possible operators which might entail counterexamples for the Invariant Subspace Problem. We prove that all the Bishop operators are biquasitriangular and, derive as a consequence that they are norm limits of nilpotent operators. Moreover, by means of arithmetical techniques along with a theorem of Atzmon, the set of irrationals $\alpha \in (0,1)$ for which $T_\alpha$ is known to possess non-trivial closed invariant subspaces is considerably enlarged, extending previous results by Davie [11], MacDonald [21] and Flattot [14]. Furthermore, we essentially show that when our approach fails to produce invariant subspaces it is actually because Atzmon's Theorem cannot be applied. Finally, upon applying arithmetical bounds obtained, we deduce local spectral properties of Bishop operators proving, in particular, that neither of them satisfy Dunford's property (C).
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.identifier.citationChamizo , F., Gallardo-Gutiérrez, E. A., Monsalve-López, M., Ubis, A. Invariant subspaces for Bishop operators and beyond. Adv. Math. 375, 107365 (2020)
dc.identifier.doi10.1016/j.aim.2020.107365
dc.identifier.officialurlhttps://doi.org/10.1016/j.aim.2020.107365
dc.identifier.urihttps://hdl.handle.net/20.500.14352/129026
dc.journal.titleAdvances in Mathematics
dc.language.isoeng
dc.page.initial107365 (25)
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83496-P/ES/ARITMETICA Y ANALISIS ARMONICO/
dc.relation.projectIDMTM2016-77710-P
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105979GB-I00/ES/OPERADORES Y GEOMETRIA EN ANALISIS MATEMATICO/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//SEV-2015-0554/ES/INSTITUTO DE CIENCIAS MATEMATICAS/
dc.relation.projectID20205CEX001
dc.relation.projectIDCT27/16
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordBishop operators
dc.subject.keywordInvariant subspace problem
dc.subject.keywordDunford’s property (C)
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.subject.ucmTeoría de números
dc.subject.unesco1202.03 Álgebra y Espacios de Banach
dc.subject.unesco1205.03 Problemas Diofánticos
dc.subject.unesco1202.14 Espacio de Hilbert
dc.titleInvariant subspaces for Bishop operators and beyond
dc.typejournal article
dc.type.hasVersionSMUR
dc.volume.number375
dspace.entity.typePublication
relation.isAuthorOfPublicationf56f1f11-4b62-4a87-80df-8dc195da1201
relation.isAuthorOfPublicationad0743b3-acba-486c-96d9-2dabcc51cda8
relation.isAuthorOfPublication.latestForDiscoveryad0743b3-acba-486c-96d9-2dabcc51cda8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ChGaMoUb_def2020.pdf
Size:
441.17 KB
Format:
Adobe Portable Document Format

Collections