Profit-sensitive machine learning classification with explanations in credit risk: The case of small businesses in peer-to-peer lending
dc.contributor.author | Ariza-Garzon, Miller Janny | |
dc.contributor.author | Arroyo Gallardo, Javier | |
dc.contributor.author | Segovia Vargas, María Jesús | |
dc.contributor.author | Caparrini, Antonio | |
dc.date.accessioned | 2024-11-12T16:03:03Z | |
dc.date.available | 2024-11-12T16:03:03Z | |
dc.date.issued | 2024-06-19 | |
dc.description.abstract | We propose a comprehensive profit-sensitive approach for credit risk modeling in P2P lending for small businesses, one of the most financially complex segments. We go beyond traditional and cost-sensitive approaches by including the financial costs and incomes through profits and introducing the profit information at three points of the modeling process: the estimation of the learning function of the classification algorithm (XGBoost in our case), the hyperparameter optimization, and the decision function. The profit-sensitive approaches achieve a higher level of profitability than the profit-insensitive approach in the small business case analyzed by granting mostly lower-risk, lower-amount loans. Explainability tools help us to discover the key features of such loans. Our proposal can be extended to other loan markets or other classification problems as long as the cells of the misclassification matrix have an economic value. | |
dc.description.department | Depto. de Economía Financiera y Actuarial y Estadística | |
dc.description.department | Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA) | |
dc.description.faculty | Fac. de Ciencias Económicas y Empresariales | |
dc.description.faculty | Fac. de Informática | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio ciencia | |
dc.description.status | pub | |
dc.identifier.citation | Ariza-Garzón, M. J., Arroyo, J., Segovia-Vargas, M. J., & Caparrini, A. (2024). Profit-sensitive machine learning classification with explanations in credit risk: The case of small businesses in peer-to-peer lending. Electronic Commerce Research and Applications, 101428. | |
dc.identifier.doi | https://doi.org/10.1016/j.elerap.2024.101428 | |
dc.identifier.officialurl | https://www.sciencedirect.com/science/article/pii/S1567422324000735?via%3Dihub | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/110493 | |
dc.issue.number | September–October 2024 | |
dc.journal.title | Electronic Commerce Research and Applications | |
dc.language.iso | eng | |
dc.page.initial | 101428 | |
dc.publisher | Elsevier | |
dc.relation.projectID | Ministerio de Ciencia e innovación PID2020- 115700RB-I00 | |
dc.relation.projectID | COST Action 19130 | |
dc.rights.accessRights | open access | |
dc.subject.keyword | Credit riskP2P lendingSmall business loansCost-sensitive modelsProfit-sensitive learningExtreme gradient boostingExplainabilityShapley values | |
dc.subject.ucm | Ciencias Sociales | |
dc.subject.unesco | 53 Ciencias Económicas | |
dc.title | Profit-sensitive machine learning classification with explanations in credit risk: The case of small businesses in peer-to-peer lending | |
dc.type | journal article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 67 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 4776976f-8d88-4992-bc6d-eea957d11041 | |
relation.isAuthorOfPublication | 44aad0f9-4f64-46ee-a6b7-e9a317fa42fd | |
relation.isAuthorOfPublication.latestForDiscovery | 4776976f-8d88-4992-bc6d-eea957d11041 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Profit_sensitive_machine_learning_classification.pdf
- Size:
- 1.88 MB
- Format:
- Adobe Portable Document Format