Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Profit-sensitive machine learning classification with explanations in credit risk: The case of small businesses in peer-to-peer lending

dc.contributor.authorAriza-Garzon, Miller Janny
dc.contributor.authorArroyo Gallardo, Javier
dc.contributor.authorSegovia Vargas, María Jesús
dc.contributor.authorCaparrini, Antonio
dc.date.accessioned2024-11-12T16:03:03Z
dc.date.available2024-11-12T16:03:03Z
dc.date.issued2024-06-19
dc.description.abstractWe propose a comprehensive profit-sensitive approach for credit risk modeling in P2P lending for small businesses, one of the most financially complex segments. We go beyond traditional and cost-sensitive approaches by including the financial costs and incomes through profits and introducing the profit information at three points of the modeling process: the estimation of the learning function of the classification algorithm (XGBoost in our case), the hyperparameter optimization, and the decision function. The profit-sensitive approaches achieve a higher level of profitability than the profit-insensitive approach in the small business case analyzed by granting mostly lower-risk, lower-amount loans. Explainability tools help us to discover the key features of such loans. Our proposal can be extended to other loan markets or other classification problems as long as the cells of the misclassification matrix have an economic value.
dc.description.departmentDepto. de Economía Financiera y Actuarial y Estadística
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio ciencia
dc.description.statuspub
dc.identifier.citationAriza-Garzón, M. J., Arroyo, J., Segovia-Vargas, M. J., & Caparrini, A. (2024). Profit-sensitive machine learning classification with explanations in credit risk: The case of small businesses in peer-to-peer lending. Electronic Commerce Research and Applications, 101428.
dc.identifier.doihttps://doi.org/10.1016/j.elerap.2024.101428
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/pii/S1567422324000735?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/110493
dc.issue.numberSeptember–October 2024
dc.journal.titleElectronic Commerce Research and Applications
dc.language.isoeng
dc.page.initial101428
dc.publisherElsevier
dc.relation.projectIDMinisterio de Ciencia e innovación PID2020- 115700RB-I00
dc.relation.projectIDCOST Action 19130
dc.rights.accessRightsopen access
dc.subject.keywordCredit riskP2P lendingSmall business loansCost-sensitive modelsProfit-sensitive learningExtreme gradient boostingExplainabilityShapley values
dc.subject.ucmCiencias Sociales
dc.subject.unesco53 Ciencias Económicas
dc.titleProfit-sensitive machine learning classification with explanations in credit risk: The case of small businesses in peer-to-peer lending
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number67
dspace.entity.typePublication
relation.isAuthorOfPublication4776976f-8d88-4992-bc6d-eea957d11041
relation.isAuthorOfPublication44aad0f9-4f64-46ee-a6b7-e9a317fa42fd
relation.isAuthorOfPublication.latestForDiscovery4776976f-8d88-4992-bc6d-eea957d11041

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Profit_sensitive_machine_learning_classification.pdf
Size:
1.88 MB
Format:
Adobe Portable Document Format

Collections