Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

On congruences of lines in the projective space.

dc.contributor.authorSols Lucía, Ignacio
dc.contributor.authorArrondo Esteban, Enrique
dc.date.accessioned2023-06-20T18:43:02Z
dc.date.available2023-06-20T18:43:02Z
dc.date.issued1992
dc.descriptionChapter 6 written in collaboration with M. Pedreira (On congruences of lines in the projective space); Mémoire de la Société Mathématique de France. Nouvelle Série. Supplément au Bulletin de la Société Mathématique de France.
dc.description.abstractThis well-written paper contains the thesis of Arrondo, written under the supervision of Sols. The topic is the study of smooth congruences (i.e. surfaces in the Grassmannian G=Gr(1,3) ), showing their parallelism with surfaces in P 4 . The authors give a simple proof of the fact that the only indecomposable bundles on G with vanishing intermediate cohomology are the line bundles and the twists of the spinor bundle. This fact is needed in order to introduce and study the good notion of linkage for congruences, called spinorial linkage. Some results in the spirit of the paper of A. P. Rao [Math. Ann. 258 (1981/82), no. 2, 169–173] are proved. Moreover, the Hilbert schemes of all smooth congruences of degree at most nine are described, improving a paper of the authors [J. Reine Angew. Math. 393 (1989), 199–219;] and a paper of A. Verra [Manuscripta Math. 62 (1988), no. 4, 417–435]. The most original result is the classification, in the flavor of Severi's theorem, of the smooth congruences that can be obtained as a projection from another surface in Gr(1,4) . There are five classes, all described. The proof is geometrical and is completely different from the case of P 4 . In the last chapter, done in collaboration with M. Pedreira, the authors prove that there are finitely many components of the Hilbert scheme consisting of smooth congruences not of general type. The analogous result for surfaces in P 4 was proved by G. Ellingsrud and C. Peskine [Invent. Math. 95 (1989), no. 1, 1–11]. Some technical lemmas which extend to curves in Q 3 the Gruson-Peskine bound for curves in P 3 are needed.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20955
dc.identifier.issn0249-633X
dc.identifier.officialurlhttp://smf4.emath.fr/en/Publications/Memoires/1992/50/html/smf_mem-ns_50.html
dc.identifier.relatedurlhttp://smf4.emath.fr/en/
dc.identifier.relatedurlhttp://www.numdam.org/numdam-bin/feuilleter?id=MSMF_1992_2_50_
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58413
dc.issue.number50
dc.journal.titleMémoires de la Société Mathématique de France. Nouvelle Série.
dc.language.isoeng
dc.page.final96
dc.page.initial1
dc.publisherSociété Mathématique de France
dc.rights.accessRightsrestricted access
dc.subject.cdu512
dc.subject.keywordGeneric projection
dc.subject.keywordCongruences of lines
dc.subject.keywordSurfaces in the grassmannian
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleOn congruences of lines in the projective space.
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication6d35def4-3d5f-4978-800f-82b7edf76b5d
relation.isAuthorOfPublication5bd88a9c-e3d0-434a-a675-3221b2fde0e4
relation.isAuthorOfPublication.latestForDiscovery5bd88a9c-e3d0-434a-a675-3221b2fde0e4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sols29.pdf
Size:
4.55 MB
Format:
Adobe Portable Document Format

Collections