Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Origin of the surface metallization in single-domain K/Si(100)2x1

dc.contributor.authorSegovia, P.
dc.contributor.authorCastro, G. R.
dc.contributor.authorMascaraque Susunaga, Arantzazu
dc.contributor.authorPrieto, P.
dc.contributor.authorKim, H. J.
dc.contributor.authorMichel, E. G.
dc.date.accessioned2023-06-20T19:14:20Z
dc.date.available2023-06-20T19:14:20Z
dc.date.issued1996-11-15
dc.description© 1996 The American Physical Society. This work was financed by DGICYT (Spain) under Grants Nos. PB-94-1527 and SAB-950019P.
dc.description.abstractThe electronic structure and the metallization onset of single-domain K/Si(100)2x1 have been investigated with angle-resolved polarization-sensitive ultraviolet photoemission. The electronic states producing the surface metallization have been studied for increasing K coverages up to room-temperature saturation. As K coverage increases, the interface undergoes a transition at a critical coverage, from a low-coverage semiconducting phase, to a saturation-coverage metallic phase. Two different surface states (F-1 and F-2) have been detected in the vicinity of the Fermi level. These two states are sequentially filled along the metallization process. The coverage dependence of both F-1 and F-2, and their symmetry properties indicate that the metallization is due to the filling of an initially empty surface band (appearance of F-2) We relate F-1 to the completion of K chains in the single-domain surface. The changes detected in K 3p line shape correlate well with the modifications of the valence band, and support that the surface remains semiconducting up to the filling of F-2.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28685
dc.identifier.doi10.1103/PhysRevB.54.R14277
dc.identifier.issn0163-1829
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.54.R14277
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59426
dc.issue.number20
dc.journal.titlePhysical review B
dc.language.isoeng
dc.page.final14280
dc.page.initial14277
dc.publisherAmerican Physical Society
dc.relation.projectIDPB-94-1527
dc.relation.projectIDSAB-950019P
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordAngle-Resolved photoemission
dc.subject.keywordElectronic-Properties
dc.subject.keywordSi(001)2x1-K Surface
dc.subject.keywordVicinal Si(100)
dc.subject.keywordStates
dc.subject.keywordPotassium
dc.subject.keywordCoverage
dc.subject.keywordAdsorption
dc.subject.keywordExistence
dc.subject.ucmFísica de materiales
dc.titleOrigin of the surface metallization in single-domain K/Si(100)2x1
dc.typejournal article
dc.volume.number54
dcterms.references1. For a recent review, see F. Flores, Surf. Rev. Lett. 2, 513 (1995). 2. L.S.O. Johansson and B. Reihl, Phys. Rev. Lett. 67, 2191 (1991). 3. E.G. Michel et al., Phys. Rev. B 45, 11 811 (1992). 4. J.A. Martin-Gago et al., Surf. Sci. 307-309, 995 (1994). 5. T. Abukawa et al., Surf. Sci. 261, 217 (1992). 6. P. Soukiassian et al., Phys. Rev. 46, 13 471 (1992). 7. U.A. Effner et al., Surf. Sci. 277, 207 (1992). 8. Y.-C. Chao et al., Phys. Rev. B 52, 2579 (1995). 9. S. Tanaka et al., Phys. Rev. B 42, 1868 (1990). 10. R. Kaplan, Surf. Sci. 93, 145 (1980). 11. O.L. Alerhand et al., Phys. Rev. Lett. 64, 2406 (1990). 12. L.S.O. Johansson et al., Phys. Rev. B 42, 1305 (1990). 13. Y. Enta et al., J. Phys. Soc. Jpn. 59, 657 (1990). 14. A. Goldmann et al., Surf. Sci. 169, 438 (1986). 15. P. Mårtensson, A. Cricenti, and G.V. Hansson, Phys. Rev. B 33, 8855 (1986). 16. This behavior is due to the fact that the projected bulk bands at Ƭ_ 0 and Ƭ_1(see Fig. 1) are not equivalent. A more detailed analysis will be presented in a forthcoming publication (Ref. 17). 17. P. Segovia et al. (unpublished). 18. Y. Enta et al., Phys. Rev. B 39, 1125 (1989). 19. H. Ishida and K. Terakura, Phys. Rev. B 40, 11 519 (1989). 20. K. Kobayashi et al., Phys. Rev. B 45, 3469 (1992). 21. Most recent investigations support initial adsorption on cave sites only, or on a mixture of sites including cave sites. 22. T. Abukawa and S. Kono, Phys. Rev. B 37, 9097 (1988). 23. M.C. Asensio et al. (unpublished). 24. Soukiassian et al. (Ref. 6) have pointed out that minute amounts of contaminants can also increase the saturation value, probably by forming less volatile K compounds. 25. A.J. Smith, W.R. Graham, and E.W. Plummer, Surf. Sci. Lett. 243, L37 (1991). 26. A. Brodde, Th. Bertrans, and H. Neddermeyer, Phys. Rev. B 47, 4508 (1993). 27. G.R. Castro et al., Vacuum 41, 564 (1990). 28. A. Hamawi, Phys. Rev. B 50, 10 910 (1994). 29. M.C. Refolio et al., Phys. Rev. B 53, 4791 (1995).
dspace.entity.typePublication
relation.isAuthorOfPublication9d984e3c-69fb-476e-af0b-5134c4d26028
relation.isAuthorOfPublication.latestForDiscovery9d984e3c-69fb-476e-af0b-5134c4d26028

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mascaraque,A 57libre.pdf
Size:
110.2 KB
Format:
Adobe Portable Document Format

Collections