Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The sub-supertrajectory method. Application to the nonautonomous competition Lotka-Volterra model

dc.contributor.authorLanga, J.A.
dc.contributor.authorRodríguez Bernal, Aníbal
dc.contributor.authorSuárez, Antonio
dc.date.accessioned2023-06-20T03:58:47Z
dc.date.available2023-06-20T03:58:47Z
dc.date.issued2010
dc.description.abstractIn this paper we study in detail the pullback and forwards attractions to non-autonomous competition Lotka-Volterra system. In particular, under some conditions on the parameters, we prove the existence of a unique non-degenerate global solution for these models, which attracts any other complete bounded trajectory. For that we present the sub-supertrajectory tool as a generalization of the now classical subsupersolution method.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipCCG07-UCM/ESP-2393
dc.description.sponsorshipUCM-CAM
dc.description.sponsorshipCADEDIF
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33328
dc.identifier.issn1575-9822
dc.identifier.officialurlhttp://www.sema.org.es/web/component/option,com_wrapper/Itemid,68/lang,spanish/
dc.identifier.relatedurlhttp://www.sema.org.es/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44757
dc.journal.titleBoletín de la Sociedad Española de Matemática Aplicada. SEMA
dc.language.isoeng
dc.page.final99
dc.page.initial91
dc.publisherSociedad Española de Matemática Aplicada
dc.relation.projectIDMTM2008-0088
dc.relation.projectIDHF2008-0039
dc.relation.projectIDPHB2006-003PC
dc.relation.projectIDMTM2006-08262
dc.relation.projectIDMTM2006-07932
dc.rights.accessRightsopen access
dc.subject.cdu517.9
dc.subject.keywordSub-supertrajectory method
dc.subject.keywordLotka-Volterra competition system
dc.subject.keywordattracting complete trajectories
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleThe sub-supertrajectory method. Application to the nonautonomous competition Lotka-Volterra model
dc.typejournal article
dc.volume.number51
dcterms.referencesR. S. Cantrell and C. Cosner, Practical persistence in ecological models via comparison methods, Proc. Royal Soc. Edin., 126A (1996) 247-272. R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons. Ltd. 2003. I. Chueshov, Monotone random systems theory and applications. Lecture Notes in Mathematics, 1779. Springer-Verlag, Berlin, 2002. P. Hess, Periodic-Parabolic boundary value problems and positivity, Pitman Research Notes in Mathematics 247, Harlow Longman. 1991. G. Hetzer, W. Shen, Uniform persistence, coexistence, and extinction in almost periodic/nonautonomous competition diffusion systems, SIAM J. Math. Anal., 34 (2002) 204-221. J. A. Langa, J.C. Robinson, A. Rodríguez-Bernal and A. Suárez, Permanence and asymptotically stable complete trajectories for nonautonomous Lotka-Volterra models with diffusion, SIAM J. Math. Anal. 40 (2009) 2179–2216. J. A. Langa, A. Rodríguez-Bernal and A. Suárez, On the long time behaviour of non-autonomous Lotka-Volterra models with diffusion via the sub-super trajectory method, submitted. J. A. Langa and A. Suárez, Pullback permanence for non-autonomous partial differential equations, Electron. J. Differential Equations 2002, 72, 20 pp. J. López-Gómez, On the structure of the permanence region for competing species models with general diffusivities and transport effects,Discrete Contin. Dyn. Syst., 2 (1996) 525-542. C. V. Pao, Nonlinear parabolic and elliptic equations, Plenum, New York, 1992. J.C. Robinson, A. Rodríguez-Bernal, and A. Vidal-López, Pullback attractors and extremal complete trajectories for non-autonomous reaction-diffusion problems, J. Differential Equations 238 (2007) 289–337. A. Rodríguez-Bernal and A. Vidal-López, Existence, uniqueness and attractivity properties of positive complete trajectories for non-autonomous reaction-diffusion problems, Discrete Contin. Dyn. Syst., 18 (2007) 537–567
dspace.entity.typePublication
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublication.latestForDiscoveryfb7ac82c-5148-4dd1-b893-d8f8612a1b08

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodBernal107.pdf
Size:
552.36 KB
Format:
Adobe Portable Document Format

Collections