Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Pointwise gradient estimates and stabilization for Fisher-KPP type equations with a concentration dependent diffusion

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2010

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Inderscience publishers
Citations
Google Scholar

Citation

Abstract

We prove a pointwise gradient estimate for the bounded weak solution of the Cauchy problem associated to the quasilinear Fisher-KPP type equation ut ='(u)xx + (u) when ' satisÖes that '(0)=0; and (u) is vanishing only for levels u = 0 and u = 1. As a Örst consequence we prove that the bounded weak solution becomes instantaneously a continuous function even if the initial datum is merely a discontinuous bounded function. Moreover the obtained estimates also prove the stabilization of the gradient of bounded weak solutions as t ! +1 for suitable initial data.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections