Infinitely many stationary solutions for a simple climate model via a shooting method
dc.contributor.author | Díaz Díaz, Jesús Ildefonso | |
dc.contributor.author | Tello del Castillo, Lourdes | |
dc.date.accessioned | 2023-06-20T16:53:07Z | |
dc.date.available | 2023-06-20T16:53:07Z | |
dc.date.issued | 2002-03-10 | |
dc.description.abstract | In this paper, we study the number of steady solutions of a non-linear model arising in Climatology. By applying a shooting method we show the existence of infinitely many steady solutions for some values of a parameter (the solar constant). This method allows us to determine how many times a solution attains the critical temperature (-10degreesC) at which the coalbedo is assumed to be discontinuous. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15525 | |
dc.identifier.doi | 10.1002/mma.289 | |
dc.identifier.issn | 0170-4214 | |
dc.identifier.officialurl | http://onlinelibrary.wiley.com/doi/10.1002/mma.289/pdf | |
dc.identifier.relatedurl | http://onlinelibrary.wiley.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57327 | |
dc.issue.number | 4 | |
dc.journal.title | Mathematical Methods in the Applied Sciences | |
dc.language.iso | eng | |
dc.page.final | 334 | |
dc.page.initial | 327 | |
dc.publisher | John Wiley & Sons Ltd. | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.956.2 | |
dc.subject.keyword | elliptic pdes | |
dc.subject.keyword | shooting method | |
dc.subject.keyword | bifurcation | |
dc.subject.keyword | climatology | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Infinitely many stationary solutions for a simple climate model via a shooting method | |
dc.type | journal article | |
dc.volume.number | 25 | |
dcterms.references | Stone PH. A simplified radiative-dynamical model for the static stability of rotating atmospheres. Journal of Atmospheric Science 1972; 29(3):405–418. Díaz JI, Hernández J, Tello L. On the multiplicity of equilibrium solutions to a non-linear diffusion equation on a manifold arising in Climatology. Journal of Mathematical Analysis and Applications 1997; 216:593–613. Arcoya D, Díaz JI, Tello L. S-shaped bifurcation branch in a quasilinear multivalued model arising in Climatology. Journal of Differential Equations 1998; 150:215–225. Tello L. Tratamiento matemático de algunos modelos no lineales que aparecen en Climatología. Ph.D. Thesis, Univ. Complutense de Madrid, 1996. Hetzer G. S-shapedness for energy balance climate models of Sellers-type. In The Mathematics of models for Climatology and Environment, NATO ASI Series, Serie I: Global Environmental Change, vol. 48, Diaz JI (ed.). Springer: Berlin, 1997. Drazin PG, Griffel DH. On the branching structure of diffusive climatological models. Journal of Atmospheric Science 1977; 34:1969–1706. North GR. Introduction to simple climate model. In Mathematics, Climate and Environment, Diaz JI, Lions JL (eds). Masson: Paris, 1993. Schmidt BE. Bifurcation of stationary solutions for Legendre-type boundary value problems arising from climate modeling. PhD Thesis, Auburn Univ., 1994. Díaz JI, Tello L. A non-linear parabolic problem on a Riemannian manifold without boundary arising in Climatology. Collectanea Mathematica 1997; 50:19–51. Hetzer G. The number of stationary solutions for one-dimensional Budyko-type climate models, to appear in Nonlinear Analysis. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 34ef57af-1f9d-4cf3-85a8-6a4171b23557 | |
relation.isAuthorOfPublication.latestForDiscovery | 34ef57af-1f9d-4cf3-85a8-6a4171b23557 |
Download
Original bundle
1 - 1 of 1