Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Infinitely many stationary solutions for a simple climate model via a shooting method

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorTello del Castillo, Lourdes
dc.date.accessioned2023-06-20T16:53:07Z
dc.date.available2023-06-20T16:53:07Z
dc.date.issued2002-03-10
dc.description.abstractIn this paper, we study the number of steady solutions of a non-linear model arising in Climatology. By applying a shooting method we show the existence of infinitely many steady solutions for some values of a parameter (the solar constant). This method allows us to determine how many times a solution attains the critical temperature (-10degreesC) at which the coalbedo is assumed to be discontinuous.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15525
dc.identifier.doi10.1002/mma.289
dc.identifier.issn0170-4214
dc.identifier.officialurlhttp://onlinelibrary.wiley.com/doi/10.1002/mma.289/pdf
dc.identifier.relatedurlhttp://onlinelibrary.wiley.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57327
dc.issue.number4
dc.journal.titleMathematical Methods in the Applied Sciences
dc.language.isoeng
dc.page.final334
dc.page.initial327
dc.publisherJohn Wiley & Sons Ltd.
dc.rights.accessRightsrestricted access
dc.subject.cdu517.956.2
dc.subject.keywordelliptic pdes
dc.subject.keywordshooting method
dc.subject.keywordbifurcation
dc.subject.keywordclimatology
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleInfinitely many stationary solutions for a simple climate model via a shooting method
dc.typejournal article
dc.volume.number25
dcterms.referencesStone PH. A simplified radiative-dynamical model for the static stability of rotating atmospheres. Journal of Atmospheric Science 1972; 29(3):405–418. Díaz JI, Hernández J, Tello L. On the multiplicity of equilibrium solutions to a non-linear diffusion equation on a manifold arising in Climatology. Journal of Mathematical Analysis and Applications 1997; 216:593–613. Arcoya D, Díaz JI, Tello L. S-shaped bifurcation branch in a quasilinear multivalued model arising in Climatology. Journal of Differential Equations 1998; 150:215–225. Tello L. Tratamiento matemático de algunos modelos no lineales que aparecen en Climatología. Ph.D. Thesis, Univ. Complutense de Madrid, 1996. Hetzer G. S-shapedness for energy balance climate models of Sellers-type. In The Mathematics of models for Climatology and Environment, NATO ASI Series, Serie I: Global Environmental Change, vol. 48, Diaz JI (ed.). Springer: Berlin, 1997. Drazin PG, Griffel DH. On the branching structure of diffusive climatological models. Journal of Atmospheric Science 1977; 34:1969–1706. North GR. Introduction to simple climate model. In Mathematics, Climate and Environment, Diaz JI, Lions JL (eds). Masson: Paris, 1993. Schmidt BE. Bifurcation of stationary solutions for Legendre-type boundary value problems arising from climate modeling. PhD Thesis, Auburn Univ., 1994. Díaz JI, Tello L. A non-linear parabolic problem on a Riemannian manifold without boundary arising in Climatology. Collectanea Mathematica 1997; 50:19–51. Hetzer G. The number of stationary solutions for one-dimensional Budyko-type climate models, to appear in Nonlinear Analysis.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
69.pdf
Size:
587.61 KB
Format:
Adobe Portable Document Format

Collections