Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Quantum time uncertainty in Schwarzschild-anti-de Sitter black holes

dc.contributor.authorGalan, Pablo
dc.contributor.authorGaray Elizondo, Luis Javier
dc.contributor.authorMena Marugán, Guillermo A.
dc.date.accessioned2023-06-20T10:51:34Z
dc.date.available2023-06-20T10:51:34Z
dc.date.issued2007-08
dc.description© 2007 The American Physical Society. The authors want to thank V. Aldaya and C. Barceló for fruitful conversations and enlightening discussions. P. G. is also very thankful to F. Barbero and J. M. Martín-García for their valuable help. P. G. gratefully acknowledges the financial support provided by the I3P framework of CSIC and the European Social Fund. This work was supported by funds provided by the Spanish MEC Projects No. FIS2005-05736-C03-02 and No. FIS2006-26387-E.
dc.description.abstractThe combined action of gravity and quantum mechanics gives rise to a minimum time uncertainty in the lowest order approximation of a perturbative scheme, in which quantum effects are regarded as corrections to the classical spacetime geometry. From the nonperturbative point of view, both gravity and quantum mechanics are treated on equal footing in a description that already contains all possible backreaction effects as those above in a nonlinear manner. In this paper, the existence or not of such minimum time uncertainty is analyzed in the context of Schwarzschild-anti-de Sitter black holes using the isolated horizon formalism. We show that from a perturbative point of view, a nonzero time uncertainty is generically present owing to the energy scale introduced by the cosmological constant, while in a quantization scheme that includes nonperturbatively the effects of that scale, an arbitrarily high time resolution can be reached.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish MEC Projects
dc.description.sponsorshipCSIC
dc.description.sponsorshipEuropean Social Fund
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29819
dc.identifier.doi10.1103/PhysRevD.76.044014
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.76.044014
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51349
dc.issue.number4
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectIDFIS2005-05736-C03-02
dc.relation.projectIDFIS2006-26387-E
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordIsolated horizons
dc.subject.keywordSpace-time
dc.subject.keywordGravity
dc.subject.keywordSymmetries
dc.subject.keywordLimits
dc.subject.keywordArea
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleQuantum time uncertainty in Schwarzschild-anti-de Sitter black holes
dc.typejournal article
dc.volume.number76
dcterms.references[1] L. J. Garay, Int. J. Mod. Phys. A 10, 145 (1995); and references therein. [2] T. Padmanabhan, Classical Quantum Gravity 4, L107 (1987). [3] G. Amelino-Camelia, Mod. Phys. Lett. A 9, 3415 (1994); 11, 1411 (1996); 13, 1319 (1998). [4] G. Amelino-Camelia, Phys. Rev. D 62, 024015 (2000); Y. J. Ng and H. van Dam, Found. Phys. 30, 795 (2000). [5] J. F. Barbero G., G. A. Mena Marugán, and E. J. S. Villaseñoor, Phys. Rev. D 69, 044017 (2004). [6] P. Galán and G. A. Mena Maruga´n, Phys. Rev. D 70, 124003 (2004). [7] P. Galán and G. A. Mena Marugán, Phys. Rev. D 72, 044019 (2005). [8] C. Rovelli and L. Smolin, Nucl. Phys. B442, 593 (1995); B456, 753 (1995); A. Ashtekar and J. Lewandowski, Classical Quantum Gravity 14, A55 (1997). [9] S. Lloyd, Nature (London) 406, 1047 (2000). [10] Y. J. Ng, Mod. Phys. Lett. A 18, 1073 (2003); arXiv:gr-qc/ 0401015; Y. J. Ng and H. van Dam, Int. J. Mod. Phys. A 20, 1328 (2005). [11] R. M. Wald, General Relativity (Chicago Press, Chicago, 1984). [12] A. Ashtekar, A. Corichi, and K. Krasnov, Adv. Theor. Math. Phys. 3, 419 (2000); A. Ashtekar et al., Phys. Rev. Lett. 85, 3564 (2000); A. Ashtekar, C. Beetle, and S. Fairhurst, Classical Quantum Gravity 17, 253 (2000); A. Ashtekar, C. Beetle, and J. Lewandowski, Phys. Rev. D 64, 044016 (2001). [13] A. Ashtekar, S. Fairhurst, and B. Krishnan, Phys. Rev. D 62, 104025 (2000). [14] We adopt units in which @ c G 1, with @ being Planck constant, G Newton constant, and c the speed of light. [15] M. Henneaux and C. Teitelboim, Commun. Math. Phys. 98, 391 (1985); J. D. Brown and M. Henneaux, Commun. Math. Phys. 104, 207 (1986). [16] A. Corichi and A. Gomberoff, Phys. Rev. D 69, 064016 (2004). [17] A. Ashtekar and S. Das, Classical Quantum Gravity 17, L17 (2000). [18] A. Ashtekar, J. C. Baez, and K. Krasnov, Adv. Theor. QMath. Phys. 4, 1 (2000). [19] Some references where the quantization of the static Schwarzschild solutions is studied are J. Makela and P. Repo, Phys. Rev. D 57, 4899 (1998); J. Makela, P. Repo, M. Luomajoki, and J. Piilonen, Phys. Rev. D 64, 024018 (2001); C. Vaz and L. Witten, Phys. Rev. D 60, 024009 (1999). [20] This implies a nonvanishing uncertainty in any physical time interval, since we have identified the zero time with the instant at which we start the measurement process. [21] We consider states with hM^ i < 1 and, if needed, take on them the limit M ! 0. [22] It suffices that there exists a positive constant C such that hM^ 2ni < Cn 8 n 1. [23] For this, we have assumed that the time T can be large and restricted ourselves to states with bounded expectation values hM^ 2ni as explained in [22]. [24] I. S. Gradshteyn and I. M. Ryzhik, in Table of Integrals, Series and Products, edited by A. Jeffrey and D. Zwillinger (Academic Press, San Diego, 2000), 6th ed. [25] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (Springer-Verlag, New York, 1999).
dspace.entity.typePublication
relation.isAuthorOfPublication5638c18d-1c35-40d2-8b77-eb558c27585e
relation.isAuthorOfPublication.latestForDiscovery5638c18d-1c35-40d2-8b77-eb558c27585e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Garay19.pdf
Size:
143.84 KB
Format:
Adobe Portable Document Format

Collections