Sobre operadores y sucesiones en espacios de Banach separables
dc.book.title | X Jornadas hispano-lusas de matemáticas : sección de análisis matemático | |
dc.contributor.author | Martín Peinador, Elena | |
dc.date.accessioned | 2023-06-21T02:42:57Z | |
dc.date.available | 2023-06-21T02:42:57Z | |
dc.date.issued | 1985 | |
dc.description | X Jornadas Hispano-Lusas de Matemáticas, 21-25 de enero de 1985, Murcia, España. | |
dc.description.abstract | Let B and X be Banach spaces, let B be reflexive, and let (an) be a sequence in B. The author shows that inf{∑|fan|:f∈B*,||f||=1}>0 if and only if the subspace {f∈B*:∑|fan|<∞} contains no closed infinite-dimensional subspace of B*, and in that case we have, for any bounded operator T:B→X,(i)T* is strictly singular whenever ∑Tan is weakly unconditionally Cauchy, and (ii) T is compact whenever ∑||Tan||<∞. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22032 | |
dc.identifier.officialurl | http://cisne.sim.ucm.es/record=b2196627~S6*spi | |
dc.identifier.relatedurl | http://cisne.sim.ucm.es | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/65462 | |
dc.page.final | 384 | |
dc.page.initial | 380 | |
dc.page.total | 440 | |
dc.publication.place | Murcia | |
dc.publisher | Universidad de Murcia | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 515.1 | |
dc.subject.cdu | 517 | |
dc.subject.cdu | 517.98 | |
dc.subject.ucm | Análisis matemático | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.subject.unesco | 1210 Topología | |
dc.title | Sobre operadores y sucesiones en espacios de Banach separables | |
dc.type | book part | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0074400c-5caa-43fa-9c45-61c4b6f02093 | |
relation.isAuthorOfPublication.latestForDiscovery | 0074400c-5caa-43fa-9c45-61c4b6f02093 |