On atypical values and local monodromies of meromorphic functions

dc.contributor.authorGusein-Zade, Sabir Medgidovich
dc.contributor.authorLuengo Velasco, Ignacio
dc.contributor.authorMelle Hernández, Alejandro
dc.date.accessioned2023-06-20T18:43:07Z
dc.date.available2023-06-20T18:43:07Z
dc.date.issued1999
dc.description.abstractA meromorphic function on a compact complex analytic manifold defines a C∞ locally trivial bundle over the complement to a finite subset of the projective line CP1, the bifurcation set. The monodromy transformations of this bundle correspond to loops around the points of the bifurcation set. In this paper we show that the zeta functions of these monodromy transformations {reviewer's remark: the inverse of the one defined by A'Campo} can be expressed in local terms, namely as integrals of the zeta functions of meromorphic germs with respect to the Euler characteristic. A special case of a meromorphic function on the projective space CPn is a function defined by a polynomial in n variables. We describe some applications of our technique to polynomial functions.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20988
dc.identifier.issn1531-8605
dc.identifier.officialurlhttp://link.springer.com/journal/11501
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58416
dc.issue.number2
dc.journal.titleProceedings of the Steklov Institute of Mathematics
dc.language.isoeng
dc.page.final164
dc.page.initial156
dc.publisherSpringer
dc.rights.accessRightsrestricted access
dc.subject.cdu514.76
dc.subject.keywordcompact manifolds
dc.subject.keywordmeromorphic functions
dc.subject.keywordcritical values
dc.subject.keywordMilnor fibration
dc.subject.keywordmonodromy
dc.subject.keywordzeta-functions
dc.subject.keywordbifurcations
dc.subject.keywordEuler characteristic
dc.subject.ucmGrupos (Matemáticas)
dc.titleOn atypical values and local monodromies of meromorphic functions
dc.typejournal article
dc.volume.number225
dcterms.referencesN. A’Campo, La fonction zˆeta d’une monodromie, Comment. Math. Helv. 50 (1975), 233–248. V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko, Singularities of Differentiable Maps, vol. II, Birkhäuser, Boston–Basel–Berlin, 1988. E. Artal-Bartolo, I. Luengo, A. Melle-Hernández, Milnor number at infinity, topology and Newton boundary of a polynomial function, Preprint (1997). S.M. Gusein-Zade, I. Luengo, A. Melle-Hernández, Partial resolutions and the zeta-function of a singularity, Comment. Math. Helv. 72 (1997), 244–256. S.M. Gusein-Zade, I. Luengo, A. Melle-Hernández, Zeta-functions for germs of meromorphic functions and Newton diagrams, Preprint of the Fields Institute for Research in Mathematical Sciences FI–ST 1997–005, to appear in Funct. Anal. and its Appl., 1998. S.M. Gusein-Zade, I. Luengo, A. Melle-Hernandez, On zeta-function of a polynomial at infinity, Preprint, XXX Mathematics Archives, math.AG/9801093. F. Pham, Vanishing homologies and the n variable saddlepoint method, Singularities, Proceedings of Symposia in Pure Mathematics, vol. 40, Part 2, A.M.S., Providence, RI, 1983, pp. 319–335. O.Y. Viro, Some integral calculus based on Euler characteristic, Topology and Geometry — Rohlin seminar. Lecture Notes in Math., vol. 1346, Springer, Berlin–Heidelberg–New York, 1988, pp. 127–138.
dspace.entity.typePublication
relation.isAuthorOfPublication2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce
relation.isAuthorOfPublicationc5f952f6-669f-4e3d-abc8-76d6ac56119b
relation.isAuthorOfPublication.latestForDiscovery2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
guseinluengomelle3.pdf
Size:
138.35 KB
Format:
Adobe Portable Document Format

Collections