Existence of solutions of plane traction problems for ideal composites
dc.contributor.author | Pipkin, Allen C. | |
dc.contributor.author | Sánchez de los Reyes, Víctor Manuel | |
dc.date.accessioned | 2023-06-21T02:06:49Z | |
dc.date.available | 2023-06-21T02:06:49Z | |
dc.date.issued | 1974-01 | |
dc.description.abstract | The theory of plane deformations of ideal fiber-reinforced composites involves hyperbolic equations, but boundary data are specified as in elliptic problems. When the surface tractions are given at every boundary point of a plane region, and thus given at two points on each characteristic, it is not obvious that the problem is well-set. We show that under the usual global equilibrium conditions on prescribed tractions, a solution does exist. This is done by reducing the problem to an integral equation whose kernel depends on the shape of the region, locating the spectrum of eigenvalues, and then invoking standard results of the Hilbert-Schmidt theory | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22954 | |
dc.identifier.doi | 10.1137/0126018 | |
dc.identifier.issn | 0036-1399 | |
dc.identifier.officialurl | http://www.jstor.org/stable/2099667 | |
dc.identifier.relatedurl | http://www.jstor.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64882 | |
dc.issue.number | 1 | |
dc.journal.title | SIAM Journal on applied mathematics | |
dc.language.iso | eng | |
dc.page.final | 220 | |
dc.page.initial | 213 | |
dc.publisher | Society for Industrial and Applied Mathematics | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 52 | |
dc.subject.ucm | Astronomía (Física) | |
dc.title | Existence of solutions of plane traction problems for ideal composites | |
dc.type | journal article | |
dc.volume.number | 26 | |
dcterms.references | A. C. PIPKIN AND T. G. ROGERS, Plane deformations of incompressible fiber-reinforced materials, J. Appl. Mech., 38 (1971), pp. 634-640. A. C. PIPKIN AND T. G. ROGERS, A mixed boundary value problem for fiber-reinforced materials, Quart. Appl. Math., 29 (1971), pp. 151-155. T. G. ROGERS AND A. C. PIPKIN, Small deflections offiber-reinforced beams or slabs, J. Appl. Mech., 38 (1971), pp. 1047-1048. G. C. EVERSTINE AND T. G. ROGERS, A theory of machining offiber-reinforced materials, J. Comp. Mat., 5 (1971), pp. 94-106. T. G. ROGERS AND A. C. PIPKIN, Finite lateral compression of a fiber-reinforced tube, Quart. J. Mech. Appl. Math., 24 (1971), pp. 311-330. G. C. EVERSTINE AND A. C. PIPKIN, Stress channelling in transversely isotropic elastic composites, ZAMP, 22 (1971), pp. 825-834. B. C. KAO AND A. C. PIPKIN, Finite buckling offiber-reinforced columns, Acta Mech., 13 (1972), pp. 265-280. A. J. M. SPENCER, Plane strain bending of laminatedfiber-reinforced plates, Quart. J. Mech. Appl. Math., to appear. A. J. M. SPENCER, Deformations of Fibre-Reinforced Materials, Oxford University Press, London, 1972. A. C. PIPKIN, Finite deformations of idealfiber-reinforced .composites, Micromechanics, G. P. Sendeckyi, ed., Academic Press, New York, 1973. A. H. ENGLAND, The stress boundary value problem for an idealfibre-reinforced material, J. Inst. Math. Appl., 9 (1972), pp. 310-322. A. H. ENGLAND AND T. G. ROGERS, Plane crack problemsfor idealfibre-reinforced materials. R. COURANT AND D. HILBERT, Methods of Mathematical Physics, vol. I, Interscience, New York, 1953. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1