Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A model integrating the 2‑tuple linguistic model and the CRITIC‑AHP method for hotel classification

dc.contributor.authorShu, Ziwei
dc.contributor.authorCarrasco González, Ramón Alberto
dc.contributor.authorPortela García-Miguel, Javier
dc.contributor.authorSánchez Montañés, Manuel
dc.contributor.editorPal, Umapada
dc.contributor.editorYuen, Chau
dc.date.accessioned2023-12-15T11:06:56Z
dc.date.available2023-12-15T11:06:56Z
dc.date.issued2023
dc.descriptionThis article is part of the topical collection “Advances on Data Science, Technology and Applications” guest edited by Slimane Hammoudi, Alfredo Cuzzocrea and Oleg Gusikhin.en
dc.description.abstractHotel classification is essential for hotel managers and customers. It can assist hotel managers in better understanding the needs of their customers and in improving various aspects of the hotel through relevant strategies. It also aids customers in choosing appropriate accommodations according to their preferences regarding hotel location, services, and other aspects. This paper aims to improve our previous model by incorporating expert opinions into the weight calculation, thereby increasing its practical applicability. The extended model combines the analytical hierarchy process (AHP) and the CRiteria Importance Through Intercriteria Correlation (CRITIC) methods, introducing a novel approach for calculating the weights of each aspect. The 2-tuple linguistic model is retained in the extended model to resolve the problem of information loss in linguistic information fusion. Finally, various hotel segments are obtained with the weighted K-means clustering. A dataset with over fifty million hotel reviews from TripAdvisor has been applied to evaluate the extended model. The results show that the extended model achieves denser and better separated hotel clusters than our previous model, while maintaining the same advantages. This model is more likely to help hotel managers create better strategies to tackle hotel weaknesses or gain competitive advantages, as it combines two types of weights that improve clustering results: the quantity of information in each hotel aspect and the expert judgment of each aspect's importance in hotel development.en
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipBanco Santander
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipEuropean Commission
dc.description.statuspub
dc.identifier.citationShu Z, Carrasco González RA, García-Miguel JP, Sánchez-Montañés M. A Model Integrating the 2-Tuple Linguistic Model and the CRITIC-AHP Method for Hotel Classification. SN COMPUT SCI. 2023;5:9. https://doi.org/10.1007/s42979-023-02344-5.
dc.identifier.doi10.1007/s42979-023-02344-5
dc.identifier.issn2661-8907
dc.identifier.officialurlhttps://doi.org/10.1007/s42979-023-02344-5
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s42979-023-02344-5
dc.identifier.urihttps://hdl.handle.net/20.500.14352/91322
dc.issue.number9
dc.journal.titleSN Computer Science
dc.language.isoeng
dc.page.final11
dc.page.initial1
dc.publisherSpringer
dc.relation.projectIDCT58/21-CT59/21
dc.relation.projectIDPID2019-103880RBI00
dc.relation.projectIDPGC2018-095895-B-I00
dc.relation.projectIDS2017/BMD-3688
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu519.22
dc.subject.cdu338.48
dc.subject.cdu519.816
dc.subject.keywordHotel classification
dc.subject.keyword2-Tuple linguistic model
dc.subject.keywordCRiteria Importance through Intercriteria Correlation (CRITIC) method
dc.subject.keywordAnalytical hierarchy process (AHP) method
dc.subject.keywordWeighted K-means clustering
dc.subject.keywordMulti-criteria decision making (MCDM)
dc.subject.ucmEstadística
dc.subject.ucmTurismo
dc.subject.unesco1209.03 Análisis de Datos
dc.titleA model integrating the 2‑tuple linguistic model and the CRITIC‑AHP method for hotel classificationen
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number5
dspace.entity.typePublication
relation.isAuthorOfPublication658b3e73-df89-4013-b006-45ea9db05e25
relation.isAuthorOfPublication44f935e8-9acf-4613-ab4d-e007edda7540
relation.isAuthorOfPublication.latestForDiscovery658b3e73-df89-4013-b006-45ea9db05e25

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Methods_for_hotel_classification.pd
Size:
1.27 MB
Format:
Adobe Portable Document Format

Collections