Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The natural rearrangement invariant structure on tensor products

dc.contributor.authorFernández González, Carlos
dc.contributor.authorPalazuelos Cabezón, Carlos
dc.contributor.authorPérez García, David
dc.date.accessioned2023-06-20T09:45:20Z
dc.date.available2023-06-20T09:45:20Z
dc.date.issued2008
dc.description.abstractWe prove that the only rearrangement invariant (r.i.) spaces for which there exists a crossnorm verifying that the tensor product of these spaces preserves the "natural" r.i. space structure, in the sense that it makes the multiplication operator B a topological isomorphism, are the Lp spaces.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipMEC FPU Fellowship
dc.description.sponsorshipI+D MCYT
dc.description.sponsorshipComplutense-Santander
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17793
dc.identifier.doihttp:dx.doi.org/10.1016/j.jmaa.2008.01.016
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022247X0800036X
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50306
dc.issue.number1
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.final47
dc.page.initial40
dc.publisherElsevier
dc.relation.projectID(MTM 2004-08080-C02-01)
dc.relation.projectID(MTM 2005-00082)
dc.relation.projectIDCOMPLUTENSESANTANDER (PR27/05-14045)
dc.relation.projectIDComunidad de Madrid grant UCM (910346)
dc.relation.projectIDBeca-COMPLUTENSE 2005
dc.relation.projectIDSpanish Ramón y Cajal Project
dc.rights.accessRightsopen access
dc.subject.cdu517.98
dc.subject.keywordCrossnorms in tensor product
dc.subject.keywordRearrangement invariant spaces
dc.subject.keywordLp spaces
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleThe natural rearrangement invariant structure on tensor products
dc.typejournal article
dc.volume.number343
dcterms.referencesZ. Altshuler, Characterization of co and lp among Banach spaces with symmetric basis, Israel J. Math. 24 (1976) 39–44. T. Andô, On products of Orlicz spaces, Math. Ann. 140 (1960) 174–186. S.V. Astashkin, Tensor product in symmetric function spaces, Collect. Math. 48 (1997) 375–391. S.V. Astashkin, L. Maligranda, E.M. Semenov, Multiplicator space and complemented subspaces of rearrangement invariant space, J. Funct. Anal. 202 (2003) 247–276. A. Defant, K. Floret, Tensor Norms and Operator Ideals, North-Holland, Amsterdam, 1993. A. Defant, D. Pérez-García, A tensor norm preserving unconditionality for Lp-spaces, Trans. Amer. Math. Soc., in press. D.H. Fremlin, Tensor products of Archimedean vector lattices, Amer. J. Math. 94 (1972) 777–798. D.H. Fremlin, Tensor products of Banach lattices, Math. Ann. 211 (1974) 87–106. B.R. Gelbaum, J. Gil de Lamadrid, Bases of tensor products of Banach spaces, Pacific J. Math. 11 (1961) 1281–1286. F.L. Hernandez, E.M. Semenov, Subspaces generated by translations in rearrangement invariant spaces, J. Funct. Anal. 169 (1999) 52–80. J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I and II, Springer-Verlag, 1996. M. Milman, Some new function spaces and their tensor product, Notas Mat. 20 (1978) 1–128. M. Milman, Tensor products of function spaces, Bull. Amer. Math. Soc. 82 (1976) 626–628. M. Milman, Embeddings of Lorentz–Marcinkiewicz spaces with mixed norms, Anal. Math. 4 (3) (1978) 215–223. M. Milman, Embeddings of L(p, q) spaces and Orlicz spaces with mixed norms, Notas Mat. 13 (1977) 1–7. R. O’Neil, Integral transforms and tensor products on Orlicz spaces and L(p, q) spaces, J. Anal. Math. 21 (1968) 1–276. C.J. Read, When E and E[E] are isomorphic, in: Geometry of Banach Spaces, Strobl, 1989, in: London Math. Soc. Lecture Note Ser., vol. 158, Cambridge Univ. Press, Cambridge, 1990, pp. 245–252. A. Torchinsky, Interpolation of operations and Orlicz classes, Studia Math. 59 (2) (1976/1977) 177–207.
dspace.entity.typePublication
relation.isAuthorOfPublication09970d9e-6722-4f02-aac0-023cf9867638
relation.isAuthorOfPublication5edb2da8-669b-42d1-867d-8fe3144eb216
relation.isAuthorOfPublication.latestForDiscovery09970d9e-6722-4f02-aac0-023cf9867638

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DavidPG.PDF
Size:
295.99 KB
Format:
Adobe Portable Document Format

Collections