Sensitivity analysis in a class of dynamic optimization models

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Facultad de Ciencias Económicas y Empresariales. Instituto Complutense de Análisis Económico (ICAE)
Google Scholar
Research Projects
Organizational Units
Journal Issue
A general model of dynamic optimization, deterministic, in discrete time, and with infinite time horizon is considered. We suppose that there are parameters in the formulation of the model. Conditions for stability of the optimal solution are studied. Local analysis of steady state comparative statics and comparative dynamics are presented. In addition we apply these results to a quadratic case and to an economic example: a one sector growth model.
Se considera un modelo general de optimización dinámica, determinístico, formulado en tiempo discreto y con horizonte temporal infinito. Se supone que existen diferentes parámetros en la formulación del modelo. Se estudian condiciones de estabilidad para la solución óptima. Se presentan análisis locales de estática y dinámica comparativa. Se aplican los resultados al caso cuadrático y a un ejemplo económico: un modelo de crecimiento unisectorial.
Amir, R. L. Mirman, and W Perkins (1991). One-sector non-classical optimal growth: optimality conditions and comparative dynamics. International Economic Review 32 (3), 625-644. Araujo, A. (1991). The once but not twice differentiability of the policy function. Econometrica 59 (5), 1383-1393. Araujo, A. and Seheinkman (1979). Notes on comparative dynamics. Essays in honour of Lionel McKenzie. Edited by Green and Sheinkman Acadernie Press. Becker, R. (1985). Comparative dynamics in aggregate models of optimal capital accumulation. The Quarterly Journal of Economics 100,1235-1256. Boldrin, M. and L. Montrucchio (1986). On the indeterminacy of capital accumulation paths. Journal of Economic Theory 40, 26-39. Boldrin, M. and L. Montrucchio (1989). On the differentiability of the policy function. Manuscript. Department of Economics. University of California. Los Angeles. Caputo, M. (1987). The qualitative content of simple dynamic optimization models. Ph. D. disserlation. University of Washington. Caputo, M. (1989). The qualitative content of renewable resource models. Natural Resource Modelling 3 (2), 241-259. Caputo, M. (l990a). How to do comparative dynamies on the back of an envelope in optimal control theory. Journal of Economic Dynamics and Control 14 (3/4), 655-583. Caputo, M. (l990b). Comparative dynamies via envelope methods in variational calculus. Review of Economic Studies 57,689-697. Caputo, M. (1990e). New qualitative properties in the competitive non-renewable resource extracting model of the firm. International Economic Review 31 (4), 829-839. Caputo, M. (1992). Fundamental symmetries and qualitative properties in the adjustment cost model of the firm. Journal of Mathematical Economics 21, 99-112. Levhari, d. and N. Liviatan (1972). On the stability in the saddle-point sense. Journal of Economic Theory 4,88-93. Santos, M. (1991). Smoothness of the policy function in discrete time economic models. Econometrica 59 (5),1365-1382. Santos, M. (1992a). Differentiability and comparative analysis in discrete-time infinite-horizon optimization. Journal of Economic Theory 57, 222-229. Santos, M. (1992b). Sobre la programación dinámica en modelos económicos. Revista Española de Economía (2ª Época) 9(1),7-29. Santos, M. (1993). On high-order differentiability of the policy functions. Economic Theory 3, 565-570. Silberberg, E. (1990). The structure of economics: a mathematical analysis. Second edition, McGraw Hill. Stokey, N. and R. Lucas (1989). Recursive methods in economic dynamics. Harvard University Press.