Beyond the Shannon-Khinchin formulation: The composability axiom and the universal-group entropy.

Loading...
Thumbnail Image
Full text at PDC
Publication date

2016

Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Masson
Citations
Google Scholar
Citation
[1] S. Abe, Generalized entropy optimized by a given arbitrary distribution, J. Phys. A: Math. Gen. 36 8733–8738 (2003). [2] S. Abe and S. Thurner, Robustness of the second law of thermodynamics under generalizations of the maximum entropy method, Europhys. Lett 81 (2008) 1004. [3] C. Adami, C. Ofria and T. C. Collier, Evolution of biological complexity, Proc. Natl. Acad. Sci. USA 97 (2000) 4463–4468. [4] C. Anteneodo and A. R. Plastino, Maximum entropy approach to stretched exponential probability distributions, J. Phys. A: Math. Gen. 32, 1089 (1999). [5] A. Baker, Combinatorial and arithmetic identities based on formal group laws, Lect. Notes in Math. 1298, 17–34, Springer (1987). [6] C. Beck and E. D. G. Cohen, Superstatistics, Physica A 322 267–275 (2003). [7] M. Berta, M. Christandl, R. Colbeck, J. M. Renes and R. Renner, The uncertainty principle in the presence of quantum memory, Nature Phys., vol. 6, 659–662 (2010). [8] S. Bochner, Formal Lie groups, Ann. Math. 47, 192–201 (1946). [9] E. P. Borges and I. Roditi, A family of nonextensive entropies, Phys. Lett. A 246 399–402 (1998). [10] V. M. Bukhshtaber and A. N. Kholodov, Formal groups, functional equa- tions and generalized cohomology theories, Math. USSR Sbornik 181 (1990) 75–94, English transl. Math. S. B. 69 (1991), 77–97. [11] V. M. Bukhshtaber, A. S. Mishchenko and S. P. Novikov, Formal groups and their role in the apparatus of algebraic topology, Uspehi Mat. Nauk 26 (1971), 2, 161–154, transl. Russ. Math. Surv. 26, 63–90 (1971). [12] V. M. Bukhshtaber and S. P. Novikov, Formal groups, power systems and Adams operators, Math. Sb. 84, 116-153 (1971). [13] A. Baker, F. Clarke, N. Ray, L. Schwartz, On the Kummer congruences and the stable homotopy of BU, Trans. Amer. Math. Soc. 316, 385–432 (1989). [14] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, II edition, John Wiley and Sons (1985). [15] N. Canosa and R. Rossignoli, Generalized nonadditive entropies and quan- tum entanglement, Phys. Rev. Lett. 88 170401 (2002). [16] M. Gell-Mann, The Quark and the Jaguar: Adventures in the Simple and the Complex, Macmillan (1995). [17] R. Hanel and S. Thurner, A comprehensive classification of complex statis- tical systems and an axiomatic derivation of their entropy and distribution functions, Europhys. Lett. 93 20006 (2011). [18] R. Hanel, S. Thurner, M. Gell-Mann, Generalized entropies and logarithms and their duality relations, Proc. Nat. Acad. Sci. USA 108, 6390–6394 (2012). [19] R. Hanel, S. Thurner and M. Gell-Mann, How multiplicity determines en- tropy: derivation of the maximum entropy principle for complex systems, PNAS 111 (19), 6905–6910 (2014). [20] M. Hazewinkel, Formal Groups and Applications, Academic Press, New York, 1978 [21] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum Entanglement, Rev. Mod. Phys. 81, 865 (2009). [22] G. Kaniadakis, Statistical mechanics in the context of special relativity, Phys. Rev. E 66 056125 (2002). [23] G. Kaniadakis, Maximum entropy principle and power–law tailed distribu- tions, Eur. Phys. J. B 70 3–13 (2009). [24] G. Kaniadakis, M. Lissia and A. M. Scarfone, Physica A 340 (2004) 41–49; Phys. Rev. E 71 (2005) 046128. [25] A. I. Khinchin, Mathematical Foundations of Information Theory, Dover, New York, 1957. [26] S. Kullback and R. A. Leibler, On Information and Sufficiency, Ann. of Math. Stat. 22, 79–86 (1951). [27] J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math. 30 175-193 (1906). [28] P. T. Landsberg, Thermodynamics, Interscience, New York, 1961. [29] B. Lesche, Instabilities of Rényi entropies, J. Stat. Phys. 27, 419 (1982). [30] S. Marmi and P. Tempesta, Hyperfunctions, formal groups and generalized Lipschitz summation formulas, Nonlinear Analysis 75, 1768–1777 (2012). [31] J. Naudts, Deformed exponentials and logarithms in generalized thermo- statistics, Physica A, 316, 323-334 (2002). [32] J. Naudts, Generalised exponential families and associated entropy func- tions, Entropy, 10, 131–149 (2008). [33] S. P. Novikov, The methods of algebraic topology from the point of view of cobordism theory, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 885–951, transl. Math. SSR–Izv. 1 (1967), 827–913. [34] N. A. Peters, T.-C. Wei, P. G. Kwiat, Mixed state sensitivity of several quantum information benchmarks, Physical Review A 70 (5), 052309 (2004). [35] D. Quillen, On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75, 1293–1298 (1969). [36] N. Ray, Stirling and Bernoulli numbers for complex oriented homology theory, in Algebraic Topology, Lecture Notes in Math. 1370, pp. 362–373, G. Carlsson, R. L. Cohen, H. R. Miller and D. C. Ravenel (Eds.), Springer– Verlag, 1986. [37] A. Rényi, Probability Theory, North–Holland, Amsterdam, 1970. [38] J.–P. Serre, Lie algebras and Lie groups, Lecture Notes in Mathematics, 1500 Springer–Verlag (1992). [39] F. Shafee, Lambert function and a new nonextensive form of entropy, IMA J. Appl. Math. 72, 785 (2007). [40] C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948) 379–423, 27 623–653 (1948). [41] C. Shannon, W. Weaver, The mathematical Theory of Communication, University of Illinois Press, Urbana, IL, 1949. [42] P. Tempesta, Formal groups, Bernoulli–type polynomials and L–series, C. R. Math. Acad. Sci. Paris, Ser. I 345, 303–306 (2007). [43] P. Tempesta, On Appell sequences of polynomials of Bernoulli and Euler type, J. Math. Anal. Appl. 341, 1295–1310 (2008). [44] P. Tempesta, L–series and Hurwitz zeta functions associated with the uni- versal formal group, Annali Sc. Normale Superiore, Classe di Scienze, IX, 1–12 (2010). [45] P. Tempesta, Group entropies, correlation laws and zeta functions, Phys. Rev. E 84, 021121 (2011). [46] P. Tempesta, The Lazard formal group, universal congruences and special values of zeta functions, Transactions of the American Mathematical Society, 367, 7015-7028 (2015). [47] P. Tempesta, A theorem on the existence of generalized trace-form en- tropies, preprint (2015). [48] P. Tempesta, A new family of composable entropies from group theory: the Z-entropies, arxiv: 1507.07436 (2015). [49] http://tsallis.cat.cbpf.br/TEMUCO.pdf [50] C. Tsallis, Possible generalization of the Boltzmann–Gibbs statistics, J. Stat. Phys. 52, Nos. 1/2, 479–487 (1988). [51] C. Tsallis, Generalized entropy–based criterion for consistent testing, Phys. Rev. E 58, 1442–1445 (1998). [52] C. Tsallis, Introduction to Nonextensive Statistical Mechanics–Approaching a Complex World, Springer, Berlin (2009). [53] C. Tsallis, L. Cirto, Black hole thermodynamical entropy, Eur. Phys. J. C 73, 2487 (2013). [54] C. Tsallis, M. Gell–Mann and Y. Sato, Asymptotically scale–invariant oc- cupancy of phase space makes the entropy Sq extensive, Proc. Nat. Acad. Sci. USA, 102, 15377–15382 (2005). [55] M. R. Ubriaco, Entropies based on fractional calculus, Phys. Lett. A 373, 2516–2519 2009. [56] A. Wehrl, General properties of entropy, Rev. Mod. Phys. 50, 221 (1978).
Abstract
The notion of entropy is ubiquitous both in natural and social sciences. In the last two decades, a considerable effort has been devoted to the study of new entropic forms, which generalize the standard Boltzmann-Gibbs (BC) entropy and could be applicable in thermodynamics, quantum mechanics and information theory. In Khinchin (1957), by extending previous ideas of Shannon (1948) and Shannon and Weaver (1949), Khinchin proposed a characterization of the BG entropy, based on four requirements, nowadays known as the Shannon-Khinchin (SK) axioms. The purpose of this paper is twofold. First, we show that there exists an intrinsic group-theoretical structure behind the notion of entropy. It comes from the requirement of composability of an entropy with respect to the union of two statistically independent systems, that we propose in an axiomatic formulation. Second, we show that there exists a simple universal family of trace form entropies. This class contains many well known examples of entropies and infinitely many new ones, a priori multi-parametric. Due to its specific relation with Lazard's universal formal group of algebraic topology, the new general entropy introduced in this work will be called the universal-group entropy. A new example of multi-parametric entropy is explicitly constructed.
Research Projects
Organizational Units
Journal Issue
Description
© 2015 Elsevier Inc. I wish to thank heartily prof. C. Tsallis for a careful reading of the manuscript and many useful discussions, and prof. G. Parisi for reading the manuscript and for encouragement. Interesting discussions with prof. A. González López, F. Finkel, R.A. Leo, M.A. Rodríguez and G. Sicuro are also gratefully acknowledged. This work has been supported by the research project FIS2011–22566, Ministerio de Ciencia e Innovación, Spain.
Unesco subjects
Keywords
Collections