The Pierre Auger Observatory scaler mode for the study of solar activity modulation of galactic cosmic rays

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
IOP Publishing LTD
Google Scholar
Research Projects
Organizational Units
Journal Issue
Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.
©2011 IOP Publishing Ltd and SISSA. Autoría conjunta: The Pierre Auger collaboration. Artículo firmado por mas de 10 autores. We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (MCT), Brazil; AVCR AV0Z10100502 and AV0Z10100522, GAAV KJB300100801 and KJB100100904, MSMT-CR LA08016, LC527, 1M06002, and MSM0021620859, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Istituto Nazionale di Astrofisica (INAF), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. 1 P03 D 014 30 and N N202 207238, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, Consejeria de Educacion de la Comunidad de Castilla La Mancha, FEDER funds, Ministerio de Ciencia e Innovacion and Consolider-Ingenio 2010 (CPAN), Generalitat Valenciana, Junta de Andalucia, Xunta de Galicia, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract Nos. DE-AC02-07CH11359, DE-FR02-04ER41300, National Science Foundation, Grant No. 0450696, The Grainger Foundation USA; ALFA-EC / HELEN, European Union 6th Framework Program, Grant No. MEIF-CT-2005-025057, European Union 7th Framework Program, Grant No. PIEF-GA-2008-220240, and UNESCO.
UCM subjects
[1] K. Herbst et al., On the importance of the local interstellar spectrum for the solar modulation parameter, J. Geophys. Res. 115 (2010) D00I20. [2] S.E. Forbush, Three Unusual Cosmic-Ray Increases Possibly Due to Charged Particles from the Sun, Phys. Rev. 70 (1946) 771. [3] H.V. Cane, Coronal Mass Ejections and Forbush Decreases, Space Sci. Rev. 93 (2000) 55. [4] PIERRE AUGER collaboration, J. Abraham et al., Properties and performance of the prototype instrument for the Pierre Auger Observatory, Nucl. Instrum. Meth. A 523 (2004) 50. [5] PIERRE AUGER collaboration, J. Abraham et al., The Fluorescence Detector of the Pierre Auger Observatory, Nucl. Instrum. Meth. 620 (2010) 227. [6] PIERRE AUGER collaboration, I. Allekotte et al., The Surface Detector System of the Pierre Auger Observatory, Nucl. Instrum. Meth. A 586 (2008) 409. [7] PIERRE AUGER collaboration, X. Bertou et al., Calibration of the surface array of the Pierre Auger Observatory, Nucl. Instrum. Meth. A 568 (2006) 839. [8] PIERRE AUGER collaboration, P.D.J. Clark and D. Nitz, Communications in the Auger Observatory, in Proceedings of the 27th International Cosmic Ray Conference (ICRC 2001), Hamburg, Germany (2001), pg. 765–768. [9] P. Bauleo et al., A water tank Cerenkov detector for very high energy astroparticles, Nucl. Instrum. Meth. A 406 (1998) 69. [10] PIERRE AUGER collaboration,M. Aglietta et al., Response of the Pierre Auger Observatory Water Cherenkov Detectors to Muons, in Proceedings of the 29th International Cosmic Ray Conference (ICRC 2005), Pune, India (2005), pg. 83–86. [11] PIERRE AUGER collaboration, A. Etchegoyen et al., Muon-track studies in a water Cherenkov detector, Nucl. Instrum. Meth. A 545 (2005) 602. [12] D. Alexander, K.M. Pathak and M.G. Thompson, Cerenkov energy loss of muons in water, J. Phys. A 1 (1968) 578. [13] C. Morello, L. Periale and G. Navarra, A search for high-energy cosmic gamma-ray bursts, Nuovo Cim. C 7 (1984) 682. [14] PIERRE AUGER collaboration, X. Bertou, Search for Gamma Ray Bursts using the single particle technique at the Pierre Auger Observatory, in Proceedings of the 30th International Cosmic Ray Conference (ICRC 2007), Mexico DF, Mexico (2008), pg. 441–444. [15] D. Allard et al., Use of water-Cherenkov detectors to detect gamma ray bursts at the Large Aperture GRB Observatory (LAGO), Nucl. Instrum. Meth. A 595 (2008) 70. [16] A. Budano et al., Search for Gamma Ray Bursts with the Argo-YBJ Detector in Scaler Mode, Astrophys. J. 699 (2009) 1281. [17] PIERRE AUGER collaboration, D. Thomas, Search for coincidences with astrophysical transients in Pierre Auger Observatory data, in Proceedings of the 31st International Cosmic Ray Conference (ICRC 2009), Lodz, Poland (2009). [18] ICE CUBE collaboration, R. Abbasi et al., Solar Energetic Particle Spectrum on 2006 December 13 Determined by IceTop, Astrophys. J. 689 (2008) L65. [19] PIERRE AUGER collaboration, H. Asorey, Cosmic Ray Solar Modulation Studies at the Pierre Auger Observatory, in Proccedings of the 31st International Cosmic Ray Conference (ICRC 2009), Lodz, Poland (2009). [20] E. Eroshenko et al., Relationships between neutron fluxes and rain flows, Adv. Space Res. 46 (2010) 637. [21] R. Caballero and J.F. Vald´es-Galicia, Solar modulation of galactic cosmic-ray intensity as seen by neutron monitors during 1990–1999— I. Rigidity Dependence and Correlations with Solar Activity Parameters, Solar Phys. 212 (2004) 209. [22] M. Storini et al., Rome Neutron Monitor, supported by INAF/UNIRomaTre collaboration, [23] D.F. Smart and M.A. Shea, Grid of Calculated Cosmic Ray Vertical Cutoff Rigidities for Epoch 2000.0, in Proceedings of the 30th International Cosmic Ray Conference (ICRC 2007),Mexico DF, Mexico (2007), pg. 737–740. [24] E.G. Cordaro and E.F. Olivares, Cosmic Rays 6-NM-64 Neutron Monitor Data, Los Cerrillos Cosmic Rays Observatory, in Report of Cosmic Rays Research Laboratory 2005, ISSN 0717-361X, 2005, Santiago, Chile. [25] J.W. Bieber et al., Spaceship Earth Observations of the Easter 2001 Solar Particle Event, Astrophys. J. Lett. 601 (2004) L103. [26] T. Kuwabara et al., Determination of interplanetary coronal mass ejection geometry and orientation from ground-based observations of galactic cosmic rays, J. Geophys. Res. 114 (2009) A05109. [27] T. Mulligan et al., Short-period variability in the galactic cosmic ray intensity: High statistical resolution observations and interpretation around the time of a Forbush decrease in August 2006, J. Geophys. Res. 114 (2009) A07105.