Water desalination by membrane distillation using PVDF-HFP hollow fiber membranes
dc.contributor.author | García Payo, M. Carmen | |
dc.contributor.author | Essalhi, M. | |
dc.contributor.author | Khayet Souhaimi, Mohamed | |
dc.contributor.author | García Fernández, L. | |
dc.contributor.author | Charfi, K. | |
dc.contributor.author | Arafat, H. | |
dc.date.accessioned | 2023-06-20T03:42:52Z | |
dc.date.available | 2023-06-20T03:42:52Z | |
dc.date.issued | 2010-07 | |
dc.description | The author (M. Essalhi) is thankful to Middle East Desalination Research Centre (MEDRC) for the grant (Project 06-AS007). The authors also gratefully acknowledge the financial support of the Spanish Ministry of Science and Innovation (Project FIS2006-05323). The authors wish also to thank the financial support of the University Complutense of Madrid, UCM-BSCH (Project GR58/08, UCM group 910336). | |
dc.description.abstract | Poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP, hollow fiber membranes were prepared by the dry/wet spinning technique using different polyethylene glycol (PEG) concentrations as non-solvent additive in the dope solution. Two different PEG concentrations (3 and 5 wt.%). The morphology and structural characteristics of the hollow fiber membranes were studied by means of optical microscopy, scanning electron microscopy, atomic force microscopy (AFM) and void volume fraction. The experimental permeate flux and the salt (NaCl) rejection factor were determined using direct contact membrane distillation (DCMD) process. An increase of the PEG content in the spinning solution resulted in a faster coagulation of the PVDF-HFP copolymer and a transition of the cross-section internal layer structure from a sponge-type structure to a finger-type structure. Pore size, nodule size and roughness parameters of both the internal and external hollow fiber surfaces were determined by AFM. It was observed that both the pore size and roughness of the internal surface of the hollow fibers enhanced with increasing the PEG concentration, whereas no change was observed at the outer surface. The void volume fraction increased with the increase of the PEG content in the spinning solution resulting in a higher DCMD flux and a smaller salt rejection factor. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Middle East Desalination Research Centre (MEDRC) | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.sponsorship | University Complutense of Madrid, UCM-BSCH | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/26331 | |
dc.identifier.doi | 10.12989/mwt.2010.1.3.215 | |
dc.identifier.issn | 2005-8624 | |
dc.identifier.officialurl | http://dx.doi.org/10.12989/mwt.2010.1.3.215 | |
dc.identifier.relatedurl | http://koreascience.or.kr/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44303 | |
dc.issue.number | 3 | |
dc.journal.title | Membrane water treatment | |
dc.page.final | 230 | |
dc.page.initial | 215 | |
dc.publisher | Techno-Press | |
dc.relation.projectID | 06-AS007 | |
dc.relation.projectID | FIS2006-05323 | |
dc.relation.projectID | GR58/08, UCM group 910336 | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 536 | |
dc.subject.keyword | Water treatment | |
dc.subject.keyword | Poly(vinylidene fluoride-co-hexafluoropropylene) | |
dc.subject.keyword | Hollow fiber | |
dc.subject.keyword | Membrane Distillation | |
dc.subject.ucm | Termodinámica | |
dc.subject.unesco | 2213 Termodinámica | |
dc.title | Water desalination by membrane distillation using PVDF-HFP hollow fiber membranes | |
dc.type | journal article | |
dc.volume.number | 1 | |
dcterms.references | [1] Al-Obaidani, S., Curcio, E., Macedonio, F., Di Profio, G., Al-Hinai, H. and Drioli, E. (2008), "Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation", J. Membrane Sci., 323, 85-98. [2] Bonyadi, S. and Chung, T.S. (2009), "Highly porous and macrovoid-free PVDF hollow fiber membranes for membrane distillation by a solvent-dope solution co-extrusion approach", J. Membrane Sci., 331, 66-74. [3] Cao, J.H., Zhu, B.K. and Xu, Y.Y. (2006), "Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes", J. Membrane Sci., 281, 446-453. [4] Chung, T.S.N. (2008), "Fabrication of hollow-fiber membrane by phase inversion", Advanced Membrane Technology and Applications, (Eds. Li, N.N., Fane, A.G., Ho, W.S.W. and Matsuura, T.), John Wiley & Sons, New Jersey. [5] El-Bourawi, M.S., Ding, Z., Ma, R. and Khayet, M. (2006), "A framework for better understanding membrane distillation separation process", J. Membrane Sci., 285, 4-29. [6] Feng, C., Wang, R., Shi, B., Li, G. and Wu, Y. (2006), "Factors affecting pore structure and performance of poly(vinylidene fluoride-co-hexafluoropropylene) asymmetric porous membrane", J. Membrane Sci., 277, 55- 64. [7] García Payo, M.C., Izquierdo Gil, M.A. and Fernández Pineda, C. (2000), "Air gap membrane distillation of aqueous alcohol solutions", J. Membrane Sci., 169, 61-80. [8] García Payo, M.C., Izquierdo Gil, M.A. and Fernández Pineda, C. (2002), "Wetting study of hydrophobic membranes via liquid entry pressure measurements with aqueous alcohol solutions", J. Colloid Interf. Sci., 230, 420-431. [9] García Payo, M.C., Rivier, C.A., Marison, I.W. and von Stockar, U. (2002), "Separation of binary mixtures by thermostatic sweeping gas membrane distillation: II. Experimental results with aqueous formic acid solutions", J. Membrane Sci., 198, 197-210. [10] García Payo, M.C., Essalhi, M. and Khayet, M. (2009), "Preparation and characterization of PVDF-HFP copolymer hollow fiber membranes for membrane distillation", Desalination, 246, 96-100. [11] García Payo, M.C., Essalhi, M. and Khayet, M. (2010), "Effects of PVDF-HFP concentration on membranes distillation performance and structural morphology of hollow fiber membranes", J. Membrane Sci., 347, 209- 219. [12] Gryta, M., Tomaszewska, M. and Karakulski, K. (2006), "Wastewater treatment by membrane distillation", Desalination, 198, 67-73. [13] Hou, D., Wang, J., Qu, D., Luan, Z. and Ren, X. (2009), "Fabrication and characterization of hydrophobic PVDF hollow fiber membranes for desalination through direct contact membrane distillation", Sep. Purif. Technol., 69, 78-86. [14] Hwang, Y.J., Jeong, S.K., Nahm, K.S. and Stephan A.M. (2007). "Electrochemical studies on poly(vinylidene fluoride-co-hexafluropropylene) membranes prepared by phase inversion method", Eur. Polym. J. 43, 65-71. [15] Izquierdo Gil, M.A., García Payo, M.C. and Fernández Pineda, C. (1999), "Direct contact membrane distillation of sugar aqueous solutions", Sep. Sci. Technol., 34, 1773-1801. [16] Khayet, M. (2003), "The effects of air gap length on the internal and external morphology of hollow fiber membranes", Chem. Eng. Sci., 58, 3091-3104. [17] Khayet, M. (2008), "Membrane distillation", Advanced Membrane Technology and Applications, (Eds. Li, N.N., Fane, A.G., Ho, W.S.W. and Matsuura T.), John Wiley & Sons, New Jersey. [18] Khayet, M. and Matsuura, T. (2001), "Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation", Ind. Eng. Chem. Res., 40, 5710-5718. [19] Khayet, M., Feng, C., Khulbe, K.C. and Matsuura, T. (2002), "Preparation and characterization of polyvinylidene fluoride hollow fiber membranes for ultrafiltration", Polymer, 43, 3879-3890. [20] Khayet, M., Velázquez, A. and Mengual, J.I. (2004), "Direct contact membrane distillation of humic acid solutions", J. Membrane Sci., 240, 123-128. [21] Khayet, M., Garcia Payo, M.C., Qusay, F.A., Khulbe, K.C., Feng, C.Y. and Matsuura, T. (2008), "Effects of gas gap type on structural morphology and performance of hollow fibers", J. Membrane Sci., 311, 259-269. [22] Khulbe, K.C., Feng, C.Y., Hamad, F., Matsuura, T. and Khayet, M. (2004), "Structural and performance study of micro porous polyetherimide hollow fiber membranes prepared at different air gap", J. Membrane Sci., 245, 191-198. [23] Li, B. and Sirkar, K.K. (2004), "Novel membrane and device for direct contact membrane distillation based desalination process", Ind. Eng. Chem. Res., 43, 5300-5309. [24] Li, G.C., Zhang, P., Zhang, H.P., Yang, L.C. and Wu, Y.P. (2008), "A porous polymer electrolyte based on P(VDF-HFP) prepared by simple phase separation process", Electrochem. Commum., 10, 1883-1885. [25] Martinez, L. and Rodriguez Maroto, J.M. (2008), "Membrane thickness reduction effects on direct contact membrane distillation performance", J. Membrane Sci., 312, 143-156. [26] Park, H.H., Deshwal, B.R., Kim, I.W. and Lee, H.K. (2008), "Absorption of $SO_{2}$ from flue gas using PVDF hollow fiber membranes in a gas-liquid contactor", J. Membrane Sci., 319, 29-37. [27] Qtaishat, M., Matsuura, T., Kruczek, B. and Khayet, M. (2008), "Heat and mass transfer analysis in direct contact membrane distillation", Desalination, 219, 272-292. [28] Qtaishat, M., Rana, D., Khayet, M. and Matsuura, T. (2009), "Preparation and characterization of novel hydrophobic/hydrophilic polyetherimide composite membranes for desalination by direct contact membrane distillation", J. Membrane Sci., 327, 264-273. [29] Seol, W.H., Lee, Y.M. and Park, J.K. (2007), "Enhancement of the mechanical properties of PVDF membranes by non-solvent aided morphology control", J. Power Sources, 170, 191-195. [30] Shi, L., Wang, R., Cao, Y., Feng, C., Liang, D.T. and Tay, J.H. (2007), "Fabrication of poly(vinylidene fluorideco- hexafluoropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes", J. Membrane Sci.,305, 215-225. [31] Shi, L., Wang, R., Cao, Y., Liang, D.T. and Tay, J.H. (2008), "Effect of additives on the fabrication of poly(vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes", J. Membrane Sci., 315, 195-204. [32] Shi, L., Wang, R., Cao, Y. (2009), "Effect of the rheology of poly(vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) dope solutions on the formation of microporous hollow fibers used as membrane contactors", J. Membrane Sci., 344, 112-122. [33] Song, L., Li, B., Sirkar, K.K. and Gilron, J.L. (2007), "Direct contact membrane distillation-based desalination: novel membranes, devices, larger-scale studies and a model", Ind. Eng. Chem. Res., 46, 2307-2323. [34] Stephan, A.M., Renganathan, N.G., Gopukumar, S. and Teeters, D. (2004), "Cycling behavior of poly(vinylidene fluoride-co-hexafluoro propylene) (PVDF-HFP) membranes prepared by phase inversion method", Mater. Chem. Phys., 85, 6-11. [35] Teoh, M.M., Bonyadi, S. and Chung, T.S. (2008), "Investigation of different hollow fiber module designs for flux enhancement in the membrane distillation process", J. Membrane Sci., 311, 371-379. [36] Tian, X. and Jiang, X. (2008), "Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) membranes for ethyl acetate removal from water", J. Hazard. Mater., 153, 128-135. [37] Tomaszewska, M. (1996), "Preparation and properties of flat-sheet membranes from poly(vinylidene) fluoride for membrane distillation", Desalination, 104, 1-11. [38] Wang, D., Li, K. and Teo, W.K. (1999), "Preparation and characterization of polyvinylidene fluoride (PVDF) hollow fiber membranes", J. Membrane Sci., 163, 211-220. [39] Wang, K.Y., Chung, T.S. and Gryta, M. (2008), "Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the freshwater production through membrane distillation", Chem. Eng. Sci,. 63, 2587-2596. [40] Yeow, M.L., Liu, Y.T. and Li, K. (2004), "Morphological studies of poly(vinylidene fluoride) asymmetric membranes: effect of the solvent, additive and dope temperature", J. Appl. Polym. Sci., 92, 1782-1789. [41] Zhang, M., Zhang, A.Q., Zhu, B.K., Du, C.H. and Xu, Y.Y. (2008), "Polymorphism in porous poly(vinylidene fluoride) membranes formed via immersion precipitation process", J. Membrane Sci., 319, 169-175. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 4445a915-d69c-4da6-8878-c17f5b0b7811 | |
relation.isAuthorOfPublication | 8e32e718-0959-4e6c-9e04-891d3d43d640 | |
relation.isAuthorOfPublication.latestForDiscovery | 8e32e718-0959-4e6c-9e04-891d3d43d640 |