Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Transport mechanisms in hyperdoped silicon solar cells

dc.contributor.authorGarcía Hernansanz, Rodrigo
dc.contributor.authorDuarte Cano, Sebastián
dc.contributor.authorPérez Zenteno, Francisco José
dc.contributor.authorCaudevilla Gutiérrez, Daniel
dc.contributor.authorGarcía Hemme, Eric
dc.contributor.authorAlgaidy, Sari
dc.contributor.authorOlea Ariza, Javier
dc.contributor.authorPastor Pastor, David
dc.contributor.authorPrado Millán, Álvaro Del
dc.contributor.authorSan Andrés Serrano, Enrique
dc.contributor.authorMartil De La Plaza, Ignacio
dc.date.accessioned2023-06-22T12:34:01Z
dc.date.available2023-06-22T12:34:01Z
dc.date.issued2022-12-01
dc.descriptionArtículo firmado por 15 autores. © 2022 IOP Publishing Ltd. The authors would like to thank the Physical Sciences Research Assistance Centre (CAI de Técnicas Físicas) of the Complutense University of Madrid. This study was partially funded by Project MADRID-PV2 (P2018/EMT-4308), with aid from the Regional Government of Madrid and the ERDF, by the Spanish Ministry of Science and Innovation/National Research Agency (MCIN/AEI) under Grants TEC2017- 84378-R, PID2019-109215RB-C41, PID2020-116508RB-I00 and PID2020-117498RB-I00. Daniel Caudevilla would like to express his thanks for Grant PRE2018-083798, provided by the MICINN and the European Social Fund. Francisco Pérez Zenteno would also like to express his thanks for Grant 984933, provided by CONACyT (Mexico).en
dc.description.abstractAccording to intermediate band (IB) theory, it is possible to increase the efficiency of a solar cell by boosting its ability to absorb low-energy photons. In this study, we used a hyperdoped semiconductor approach for this theory to create a proof of concept of different silicon-based IB solar cells. Preliminary results show an increase in the external quantum efficiency (EQE) in the silicon sub-bandgap region. This result points to sub-bandgap absorption in silicon having not only a direct application in solar cells but also in other areas such as infrared photodetectors. To establish the transport mechanisms in the hyperdoped semiconductors within a solar cell, we measured the J-V characteristic at different temperatures. We carried out the measurements in both dark and illuminated conditions. To explain the behavior of the measurements, we proposed a new model with three elements for the IB solar cell. This model is similar to the classic two-diodes solar cell model but it is necessary to include a new limiting current element in series with one of the diodes. The proposed model is also compatible with an impurity band formation within silicon bandgap. At high temperatures, the distance between the IB and the n-type amorphous silicon conduction band is close enough and both bands are contacted. As the temperature decreases, the distance between the bands increases and therefore this process becomes more limiting.en
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipConsejo Nacional de Ciencia y Tecnologίa (México)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/76205
dc.identifier.citationR. García-Hernansanz, S. Duarte-Cano, F. Pérez-Zenteno, D. Caudevilla, S. Algaidy, E. García-Hemme, J. Olea, D. Pastor, A. Del Prado, E. San Andrés, I. Mártil, E. Ros, J. Puigdollers, P. Ortega, and C. Voz, Semicond. Sci. Technol. 38, 124001 (2023).
dc.identifier.doi10.1088/1361-6641/ac9f63
dc.identifier.issn0268-1242
dc.identifier.officialurlhttp://dx.doi.org/10.1088/1361-6641/ac9f63
dc.identifier.relatedurlhttps://iopscience.iop.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72843
dc.issue.number12
dc.journal.titleSemiconductor Science and Technology
dc.language.isoeng
dc.publisherIop Publishing Ltd
dc.relation.projectIDP2018/EMT-4308
dc.relation.projectIDTEC2017- 84378-R
dc.relation.projectIDPID2019-109215RB-C41
dc.relation.projectIDPID2020-116508RB-I00
dc.relation.projectIDPID2020-117498RB-I00
dc.relation.projectIDPRE2018-083798
dc.relation.projectID984933
dc.rights.accessRightsrestricted access
dc.subject.cdu537
dc.subject.keywordCarrier transport
dc.subject.keywordHeterojunction
dc.subject.keywordEfficiency
dc.subject.keywordTransition
dc.subject.keywordContacts
dc.subject.keywordLimit
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleTransport mechanisms in hyperdoped silicon solar cellsen
dc.typejournal article
dc.volume.number38
dspace.entity.typePublication
relation.isAuthorOfPublication838d6660-e248-42ad-b8b2-0599f3a4542b
relation.isAuthorOfPublicatione3b2b0e4-2e17-4bd4-a1cd-521cc7f0abcd
relation.isAuthorOfPublicationc0b8544d-8c06-45e3-815f-f7ddb6aeff49
relation.isAuthorOfPublication765f38c4-71cb-441b-b2a8-d88c5cdcf086
relation.isAuthorOfPublication12efa09d-69f7-43d4-8a66-75d05b8fe161
relation.isAuthorOfPublication0f0a0600-ce06-4d5b-acee-eb68dd4c9853
relation.isAuthorOfPublication7a3a1475-b9cc-4071-a7d3-fbf68fe1dce0
relation.isAuthorOfPublication21e27519-52b3-488f-9a2a-b4851af89a71
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublication.latestForDiscovery838d6660-e248-42ad-b8b2-0599f3a4542b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
San Andrés09pospr.(emb.16112023).pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format

Collections