Effects of degree correlations on the explosive synchronization of scale-free networks

Loading...
Thumbnail Image
Full text at PDC
Publication date

2015

Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Citation
Abstract
We study the organization of finite-size, large ensembles of phase oscillators networking via scale-free topologies in the presence of a positive correlation between the oscillators’ natural frequencies and the network’s degrees. Under those circumstances, abrupt transitions to synchronization are known to occur in growing scale-free networks, while the transition has a completely different nature for static random configurations preserving the same structure-dynamics correlation. We show that the further presence of degree-degree correlations in the network structure has important consequences on the nature of the phase transition characterizing the passage from the phase-incoherent to the phase-coherent network state. While high levels of positive and negative mixing consistently induce a second-order phase transition, moderate values of assortative mixing, such as those ubiquitously characterizing social networks in the real world, greatly enhance the irreversible nature of explosive synchronization in scale-free networks. The latter effect corresponds to a maximization of the area and of the width of the hysteretic loop that differentiates the forward and backward transitions to synchronization.
Research Projects
Organizational Units
Journal Issue
Description
UCM subjects
Unesco subjects
Keywords
Collections