Universal transverse momentum dependent soft function at NNLO
dc.contributor.author | Echevarria, Miguel G. | |
dc.contributor.author | Scimemi, Ignazio | |
dc.contributor.author | Vladimirov, Aleksey | |
dc.date.accessioned | 2023-06-18T06:51:29Z | |
dc.date.available | 2023-06-18T06:51:29Z | |
dc.date.issued | 2016-03-02 | |
dc.description | © 2016 American Physical Society. A. V. thanks Victor Svensson for helpful discussions. M. G. E. is supported by the “Stichting voor Fundamenteel Onderzoek der Materie” (FOM), which is financially supported by the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek” (NWO). I. S. is supported by the Spanish MECD Grants No. FPA2011-27853-CO2- 02 and No. FPA2014-53375-C2-2-P. | |
dc.description.abstract | All (un)polarized transverse momentum dependent functions (TMDs), both distribution and fragmentation functions, are defined with the same universal soft function, which cancels spurious rapidity divergences within an individual TMD and renders them well-defined hadronic quantities. Moreover, it is independent of the kinematics, whether it is Drell-Yan, deep inelastic scattering, or e^+e^−→2 hadrons. In this paper, we provide this soft function at next-to-next-to-leading order (NNLO), necessary for the calculation of all TMDs at the same order, and to perform the resummation of large logarithms at next-to-next-to-next-to-leading-logarithmic accuracy. From the results we obtain the D function at NNLO, which governs the evolution of all TMDs. This work represents the first independent and direct calculation of this quantity. Given the all-order relation through a Casimir scaling between the soft function relevant for gluon TMDs and the one for quark TMDs, we also obtain the first at NNLO. The used regularization method to deal with the rapidity divergences is discussed as well. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Nederlandse Organisatie voor Wetenschappelijk Onderzoek” (NWO), Holanda | |
dc.description.sponsorship | Ministerio de Educación, Cultura y Deporte (MECD), España | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/37095 | |
dc.identifier.doi | 10.1103/PhysRevD.93.054004 | |
dc.identifier.issn | 1550-7998 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevD.93.054004 | |
dc.identifier.relatedurl | http://journals.aps.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/24418 | |
dc.issue.number | 5 | |
dc.journal.title | Physical Review D | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.relation.projectID | FPA2011-27853-CO2- 02 | |
dc.relation.projectID | FPA2014-53375-C2-2-P | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Drell-yan production | |
dc.subject.keyword | Parton distributions | |
dc.subject.keyword | Cross-sections | |
dc.subject.keyword | Renormalization | |
dc.subject.keyword | Exponentiation | |
dc.subject.keyword | Evolution | |
dc.subject.keyword | Loop. | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | Universal transverse momentum dependent soft function at NNLO | |
dc.type | journal article | |
dc.volume.number | 93 | |
dcterms.references | 1. J. C. Collins, Foundations of Perturbative QCD (Cambridge University Press, Cambridge, England, 2011). 2. M. G. Echevarria, A. Idilbi, and I. Scimemi, J. High Energy Phys. 07 (2012) 002. 3. M. G. Echevarria, A. Idilbi, and I. Scimemi, Phys. Lett. B 726, 795 (2013). 4. M. G. Echevarria, A. Idilbi, and I. Scimemi, Phys. Rev. D 90, 014003 (2014). 5. S. M. Aybat and T. C. Rogers, Phys. Rev. D 83, 114042 (2011). 6. A. Bacchetta and A. Prokudin, Nucl. Phys. B875, 536 (2013). 7. A. V. Belitsky, X. Ji, and F. Yuan, Nucl. Phys. B656, 165 (2003). 8. A. Idilbi and I. Scimemi, Phys. Lett. B 695, 463 (2011). 9. M. Garcia-Echevarria, A. Idilbi, and I. Scimemi, Phys. Rev. D 84, 011502 (2011). 10. M. G. Echevarria, I. Scimemi, and A. Vladimirov, Phys. Rev. D 93, 011502 (2016). 11. M. G. Echevarria, I. Scimemi, and A. Vladimirov (to be published). 12. A. V. Belitsky, Phys. Lett. B 442, 307 (1998). 13. J. C. Collins and A. Metz, Phys. Rev. Lett. 93, 252001 (2004). 14. X. d. Ji, J.-P. Ma, and F. Yuan, Phys. Rev. D 71, 034005 (2005). 15. X. d. Ji, J.-P. Ma, and F. Yuan, Phys. Lett. B 597, 299 (2004). 16. Y. Li, S. Mantry, and F. Petriello, Phys. Rev. D 84, 094014 (2011). 17. J. Y. Chiu, A. Jain, D. Neill, and I. Z. Rothstein, J. High Energy Phys. 05 (2012) 084. 18. T. Becher and M. Neubert, Eur. Phys. J. C 71, 1665 (2011). 19. T. Gehrmann, T. Lubbert, and L. L. Yang, Phys. Rev. Lett. 109, 242003 (2012). 20. T. Gehrmann, T. Luebbert, and L. L. Yang, J. High Energy Phys. 06 (2014) 155. 21. S. Catani, L. Cieri, D. de Florian, G. Ferrera, and M. Grazzini, Eur. Phys. J. C 72, 2195 (2012). 22. A. A. Vladimirov, J. High Energy Phys. 08 (2014) 089. 23. I. O. Cherednikov and N. G. Stefanis, Nucl. Phys. B802, 146 (2008). 24. J. G. M. Gatheral, Phys. Lett. 133B, 90 (1983). 25. J. Frenkel and J. C. Taylor, Nucl. Phys. B246, 231 (1984). 26. G. F. Sterman, AIP Conf. Proc. 74, 22 (1981). 27. A. A. Vladimirov, Phys. Rev. D 90, 066007 (2014). 28. A. A. Vladimirov, J. High Energy Phys. 06 (2015) 120. 29. V. S. Dotsenko and S. N. Vergeles, Nucl. Phys. B169, 527 (1980). 30. R. A. Brandt, F. Neri, and M. a. Sato, Phys. Rev. D 24, 879 (1981). 31. M. G. Echevarria, A. Idilbi, and I. Scimemi, Int. J. Mod. Phys. Conf. Ser. 25, 1460005 (2014). 32. M. G. Echevarria, T. Kasemets, P. J. Mulders, and C. Pisano, J. High Energy Phys. 07 (2015) 158. 33. M. G. Echevarria, A. Idilbi, A. Schäfer, and I. Scimemi, Eur. Phys. J. C 73, 2636 (2013). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f5801569-ad40-467a-adc2-a6f592e4d094 | |
relation.isAuthorOfPublication.latestForDiscovery | f5801569-ad40-467a-adc2-a6f592e4d094 |
Download
Original bundle
1 - 1 of 1