Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the Bohnenblust-Hille inequality and a variant of Littlewood's 4/3 inequality

dc.contributor.authorNuñez Alarcón, D
dc.contributor.authorPellegrino, Daniel
dc.contributor.authorSeoane Sepúlveda, Juan Benigno
dc.date.accessioned2023-06-20T00:25:23Z
dc.date.available2023-06-20T00:25:23Z
dc.date.issued2013
dc.description.abstractThe search for sharp constants for inequalities of the type Littlewood's 4/3 and Bohnenblust-Hille has lately shown unexpected applications in many fields such as Analytic Number Theory, Quantum Information Theory, or in results on n-dimensional Bohr radii. Recent estimates obtained for the multilinear Bohnenblust-Hille inequality (for real scalars) have been used, as a crucial tool, by A. Montanaro in order to solve problems in Quantum XOR games. Here, among other results, we obtain new upper bounds for the Bohnenblust-Hille constants (for complex scalars). For bilinear forms, we provide optimal constants of variants of Littlewood's 4/3 inequality (for real scalars) when the exponent 4/3 is replaced by any r >= 4/3. We also prove that the optimal constants in real case are always strictly greater than those from the complex case.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipCNPq
dc.description.sponsorshipMinistry of Science and Innovation
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/19924
dc.identifier.doi10.1016/j.jfa.2012.10.013
dc.identifier.issn0022-1236
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022123612003886
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.relatedurlhttp://arxiv.org/pdf/1203.3043v4.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42546
dc.issue.number1
dc.journal.titleJournal of Functional Analysis
dc.language.isoeng
dc.page.final336
dc.page.initial326
dc.publisherElsevier
dc.relation.projectID301237/2009-3.
dc.relation.projectIDMTM2009-07848.
dc.rights.accessRightsrestricted access
dc.subject.cdu530.1
dc.subject.keywordBohnenblust–Hille Theorem
dc.subject.keywordLittlewood’s 4/3 inequality
dc.subject.keywordSteinhaus random variables
dc.subject.ucmFísica matemática
dc.titleOn the Bohnenblust-Hille inequality and a variant of Littlewood's 4/3 inequality
dc.typejournal article
dc.volume.number264
dcterms.referencesS. Aaronson, A. Ambainis, The Need for Structure in Quantum Speedups, Electron. Colloq. Comput. Complex.,vol. 110, 2009. A. Baernstein, R.C. Culverhouse, Majorization of sequences, sharp vector Khinchin inequalities, and bisubharmonic functions, Studia Math. 152 (3) (2002) 231–248. H.P. Boas, D. Khavinson, Bohr’s power series theorem in several variables, Proc. Amer. Math. Soc. 125 (1997)2975–2979. H.F. Bohnenblust, E. Hille, On the absolute convergence of Dirichlet series, Ann. of Math. (2) 32 (3) (1931) 600–622. A. Defant, L. Frerick, J. Ortega-Cerdà, M. Ounaïes, K.Seip, The Bohnenblust–Hille inequality for homogeneous polynomials is hypercontractive, Ann. of Math. (2) 174 (1)(2011) 485–497. A. Defant, D. Popa, U. Schwarting, Coordinatewise multiple summing operators in Banach spaces, J. Funct.Anal. 259 (1) (2010) 220–242. A. Defant, P. Sevilla-Peris, A new multilinear insight on Littlewood’s 4/3-inequality, J. Funct. Anal. 256 (5) (2009)1642–1664. J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing Operators, Cambridge Stud. Adv. Math., vol. 43, Cambridge University Press, Cambridge, 1995. D. Diniz, G.A. Muñoz-Fernández, D. Pellegrino, J.B. Seoane-Sepúlveda, The asymptotic growth of the constants in the Bohnenblust–Hille inequality is optimal, J. Funct. Anal. 263 (2) (2012) 415–428. D. Diniz, G.A. Muñoz-Fernández, D. Pellegrino, J.B. Seoane-Sepúlveda, Lower bounds for the constants in the Bohnenblust–Hille inequality: the case of real scalars,Proc. Amer. Math. Soc., in press. D.J.H. Garling, Inequalities: A Journey Into Linear Analysis, Cambridge University Press, Cambridge, 2007. U. Haagerup, The best constants in the Khintchine inequality, Studia Math. 70 (3) (1981) 231–283 (1982). M. Junge, C. Palazuelos, D. Pérez-García, I. Villanueva,M.M. Wolf, Unbounded violations of bipartite Bell inequalities via operator space theory, Comm. Math. Phys. 300 (3) (2010) 715–739. S. Kaijser, Some results in the metric theory of tensor products, Studia Math. 63 (2) (1978) 157–170. J.E. Littlewood, On bounded bilinear forms in an infinite number of variables, Q. J. Math. 1 (1930) 164–174. A. Montanaro, Some applications of hypercontractive inequalities in quantum information theory,arXiv:1208.0161v2 [quant-ph]. G.A. Muñoz-Fernández, D. Pellegrino, J.B. Seoane-Sepúlveda, Estimates for the asymptotic behavior of the constants in the Bohnenblust–Hille inequality, Linear Multilinear Algebra 60 (2012) 573–582. D. Nuñez-Alarcón, D. Pellegrino, On the growth of the optimal constants of the multilinear Bohnenblust–Hille inequality, arXiv:1205.2385v1 [math.FA]. D. Nuñez-Alarcón, D. Pellegrino, J.B. Seoane-Sepúlveda,D.M. Serrano-Rodríguez, There exist multilinear Bohnenblust–Hille constants (Cn)∞ n=1 with limn Cn+1 −Cn = 0,arXiv:1207.0124 [math.FA]. A. Pełczy´nski, Norms of classical operators in function spaces, in: Colloquium in Honor of Laurent Schwartz, vol. 1,Palaiseau, 1983, Astérisque 131 (1985) 137–162. D. Pellegrino, J.B. Seoane-Sepúlveda, New upper bounds for the constants in the Bohnenblust–Hille inequality,J. Math. Anal. Appl. 386 (1) (2012) 300–307. H. Queffélec, H. Bohr’s vision of ordinary Dirichlet series: old and new results, J. Anal. 3 (1995) 43–60. J. Sawa, The best constant in the Khinchine inequality for complex Steinhaus variables, the case p = 1, Studia Math. 81 (1) (1985) 107–126.
dspace.entity.typePublication
relation.isAuthorOfPublicatione85d6b14-0191-4b04-b29b-9589f34ba898
relation.isAuthorOfPublication.latestForDiscoverye85d6b14-0191-4b04-b29b-9589f34ba898

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Seoane02.pdf
Size:
143.36 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Seoane02libre.pdf
Size:
165.25 KB
Format:
Adobe Portable Document Format

Collections