Using XAI in the Clock Drawing Test to reveal the cognitive impairment pattern

dc.contributor.authorCarmen Jimenez-Mesa
dc.contributor.authorJuan E. Arco
dc.contributor.authorMeritxell Valenti-Soler
dc.contributor.authorBelen Frades-Payo
dc.contributor.authorMaria A. Zea-Sevilla
dc.contributor.authorAndres Ortiz
dc.contributor.authorMarina Avila-Villanueva
dc.contributor.authorDiego Castillo-Barnes
dc.contributor.authorJavier Ramirez
dc.contributor.authorTeodoro del Ser-Quijano
dc.contributor.authorCristobal Carnero-Pardo
dc.contributor.authorJuan M. Gorriz
dc.date.accessioned2026-01-14T11:22:56Z
dc.date.available2026-01-14T11:22:56Z
dc.date.issued2021
dc.description.abstractThe prevalence of dementia is currently increasing worldwide. This syndrome produces a deterioration in cognitive function that cannot be reverted. However, an early diagnosis can be crucial for slowing its progress. The Clock Drawing Test (CDT) is a widely used paper-and-pencil test for cognitive assessment in which an individual has to manually draw a clock on a paper. There are a lot of scoring systems for 20 this test and most of them depend on the subjective assessment of the expert. This study proposes a computer-aided diagnosis (CAD) system based on artificial intelligence (AI) methods to analyze the CDT and obtain an automatic diagnosis of cognitive impairment (CI). This system employs a preprocessing pipeline in which the clock is detected, centered and binarized to decrease the computational burden. Then, the resulting image is fed into a Convolutional Neural Network (CNN) to identify the informative 25 patterns within the CDT drawings that are relevant for the assessment of the patient’s cognitive status. Performance is evaluated in a real context where patients with CI and controls have been classified by clinical experts in a balanced sample size of 3282 drawings. The proposed method provides an accuracy of 75.65% in this classification task, with an AUC of 0.83. These results overcome previous studies, showing that the method proposed has a high reliability to be used in clinical contexts. The large size 30 of the sample and the performance obtained despite being applied to the classic version of the CDT demonstrate the suitability of CAD systems in the CDT assessment process. Explainable AI (XAI) methods are applied to identify the most relevant regions during classification. Finding these patterns is extremely helpful to understand the brain damage caused by cognitive impairment. A validation method using resubstitution with upper bound correction in a machine learning approach is also discussed.
dc.description.departmentDepto. de Psicología Social, del Trabajo y Diferencial
dc.description.facultyFac. de Psicología
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España). Agencia Estatal de Investigación
dc.description.sponsorshipFondo Europeo de Desarrollo Regional
dc.description.sponsorshipJunta de Andalucía (España)
dc.description.sponsorshipMinisterio de Universidades (España)
dc.description.statuspub
dc.identifier.citationJiménez-Mesa C, Arco JE, Valentí-Soler M, Frades-Payo B, Zea-Sevilla MA, Ortiz A, Ávila-Villanueva M, Castillo-Barnes D, Ramírez J, Del Ser-Quijano T, Carnero-Pardo C, Górriz JM. Using Explainable Artificial Intelligence in the Clock Drawing Test to Reveal the Cognitive Impairment Pattern. Int J Neural Syst. 2023 Apr;33(4):2350015
dc.identifier.doi10.1142/S0129065723500156
dc.identifier.essn1793-6462
dc.identifier.issn0129-0657
dc.identifier.officialurlhttps://www.worldscientific.com/worldscinet/ijns
dc.identifier.urihttps://hdl.handle.net/20.500.14352/130172
dc.journal.titleInternational Journal of Neural Systems
dc.language.isoeng
dc.publisherWorld Scientific Publishing Company
dc.relation.projectIDinfo:eu-repo/grantAgreement/MCIN/ AEI/10.13039/501100011033/
dc.relation.projectIDinfo:eu-repo/grantAgreement/FEDER/ Una manera de hacer Europa/RTI2018- 098913-B100
dc.relation.projectIDinfo:eu-repo/grantAgreement/Consejeria de Economia, Innovacion, Ciencia y Empleo de la Junta de Andalucía/ Una manera de hacer Europa/FEDER/CV20-45250, A-TIC080-UGR18, B-TIC-586-UGR20 and P20-00525
dc.relation.projectIDinfo:eu-repo/grantAgreement/Ministerio de Universidades/ FPU18/04902
dc.relation.projectIDinfo:eu-repo/grantAgreement/Margarita Salas
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu159.9
dc.subject.keywordClock Drawing Test
dc.subject.keywordCognitive Impairment
dc.subject.keywordClinical diagnosis
dc.subject.keywordComputer-aided diagnosis
dc.subject.keywordDeep learning
dc.subject.keywordExplanaible AI
dc.subject.keywordImage processing
dc.subject.keywordMachine Learning
dc.subject.keywordAlzheimer’s disease
dc.subject.ucmCiencias Biomédicas
dc.subject.unesco32 Ciencias Médicas
dc.titleUsing XAI in the Clock Drawing Test to reveal the cognitive impairment pattern
dc.typejournal article
dc.type.hasVersionAM
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Using Explainable.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format

Collections