Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Classification of Depression Through Resting-State Electroencephalogram as a Novel Practice in Psychiatry: Review

dc.contributor.authorČukić, Milena
dc.contributor.authorLópez, Victoria
dc.contributor.authorPavón Mestras, Juan Luis
dc.date.accessioned2024-01-25T16:33:24Z
dc.date.available2024-01-25T16:33:24Z
dc.date.issued2020
dc.description.abstractMachine learning applications in health care have increased considerably in the recent past, and this review focuses on an important application in psychiatry related to the detection of depression. Since the advent of computational psychiatry, research based on functional magnetic resonance imaging has yielded remarkable results, but these tools tend to be too expensive for everyday clinical use. This review shows the need for larger data sets and more systematic procedures to improve the use of the solution for clinical diagnostics. Therefore, regulation of the pipeline and standard requirements for methodology used should become mandatory to increase the reliability and accuracy of the complete methodology for it to be translated to modern psychiatry.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationČukić M, López V, Pavón J Classification of Depression Through Resting-State Electroencephalogram as a Novel Practice in Psychiatry: Review J Med Internet Res 2020;22(11):e19548 doi: 10.2196/19548
dc.identifier.doi10.2196/19548
dc.identifier.issn1438-8871
dc.identifier.officialurlhttps://doi.org/10.2196/19548
dc.identifier.pmid33141088
dc.identifier.urihttps://hdl.handle.net/20.500.14352/95553
dc.issue.number11
dc.journal.titleJournal of Medical Internet Research
dc.language.isoeng
dc.page.initiale19548
dc.publisherJMIR Publications
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.keywordComputational psychiatry
dc.subject.keywordPhysiological complexity
dc.subject.keywordMachine learning
dc.subject.keywordResting-state EEG
dc.subject.keywordComputational neuroscience
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titleClassification of Depression Through Resting-State Electroencephalogram as a Novel Practice in Psychiatry: Review
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number22
dspace.entity.typePublication
relation.isAuthorOfPublication665acbdc-5829-4651-9c46-646d423a2546
relation.isAuthorOfPublication.latestForDiscovery665acbdc-5829-4651-9c46-646d423a2546

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Classification_of_Depression.pdf
Size:
456.32 KB
Format:
Adobe Portable Document Format

Collections