Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Fuchsian groups generated by half-turns and geometrical characterization of hyperelliptic and symmetric Riemann surfaces

dc.contributor.authorEtayo Gordejuela, José Javier
dc.contributor.authorMartínez García, Ernesto
dc.date.accessioned2023-06-20T09:36:42Z
dc.date.available2023-06-20T09:36:42Z
dc.date.issued2004
dc.description.abstractWe construct a special type of fundamental regions for any Fuchsian group $F$ generated, by an even number of half-turns, and for certain non-Euclidean crystallographic groups (NEC groups in short). By comparing these regions we give geometrical conditions for F to be the canonical Fuchsian subgroup of one of those NEC groups. Precisely speaking, we deal with NEC groups of algebraic genus 0 having all periods in the signature equal to 2. By means of these conditions we give a characterization of hyperelliptic and symmetric Riemann surfaces.es
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15787
dc.identifier.issn0025-5521
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50028
dc.issue.number2
dc.journal.titleMathematica Scandinavica
dc.page.final244
dc.page.initial226
dc.publisherMatematisk Institut, Universitetsparken NY Munkegade
dc.rights.accessRightsmetadata only access
dc.subject.cdu512.54
dc.subject.keywordFuchsian groups and automorphic functions
dc.subject.keywordFuchsian groups and their generalizations
dc.subject.ucmGrupos (Matemáticas)
dc.titleFuchsian groups generated by half-turns and geometrical characterization of hyperelliptic and symmetric Riemann surfacesen
dc.typejournal article
dc.volume.number95
dspace.entity.typePublication
relation.isAuthorOfPublication2275e5ec-53a7-4e0f-82d6-517cdf4cd56c
relation.isAuthorOfPublication.latestForDiscovery2275e5ec-53a7-4e0f-82d6-517cdf4cd56c

Download

Collections