Fuchsian groups generated by half-turns and geometrical characterization of hyperelliptic and symmetric Riemann surfaces
dc.contributor.author | Etayo Gordejuela, José Javier | |
dc.contributor.author | Martínez García, Ernesto | |
dc.date.accessioned | 2023-06-20T09:36:42Z | |
dc.date.available | 2023-06-20T09:36:42Z | |
dc.date.issued | 2004 | |
dc.description.abstract | We construct a special type of fundamental regions for any Fuchsian group $F$ generated, by an even number of half-turns, and for certain non-Euclidean crystallographic groups (NEC groups in short). By comparing these regions we give geometrical conditions for F to be the canonical Fuchsian subgroup of one of those NEC groups. Precisely speaking, we deal with NEC groups of algebraic genus 0 having all periods in the signature equal to 2. By means of these conditions we give a characterization of hyperelliptic and symmetric Riemann surfaces. | es |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15787 | |
dc.identifier.issn | 0025-5521 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50028 | |
dc.issue.number | 2 | |
dc.journal.title | Mathematica Scandinavica | |
dc.page.final | 244 | |
dc.page.initial | 226 | |
dc.publisher | Matematisk Institut, Universitetsparken NY Munkegade | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 512.54 | |
dc.subject.keyword | Fuchsian groups and automorphic functions | |
dc.subject.keyword | Fuchsian groups and their generalizations | |
dc.subject.ucm | Grupos (Matemáticas) | |
dc.title | Fuchsian groups generated by half-turns and geometrical characterization of hyperelliptic and symmetric Riemann surfaces | en |
dc.type | journal article | |
dc.volume.number | 95 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 2275e5ec-53a7-4e0f-82d6-517cdf4cd56c | |
relation.isAuthorOfPublication.latestForDiscovery | 2275e5ec-53a7-4e0f-82d6-517cdf4cd56c |