Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Hyperdoped silicon materials: from basic materials properties to sub-bandgap infrared photodetectors

dc.contributor.authorSher, Meng-Ju
dc.contributor.authorGarcía Hemme, Eric
dc.date.accessioned2024-11-22T12:43:46Z
dc.date.available2024-11-22T12:43:46Z
dc.date.issued2023-02-06
dc.descriptionSe deposita la versión postprint del artículo
dc.description.abstractHyperdoping silicon, which introduces deep-level dopants into Si at concentrations near one atomic percent, drastically changes its optoelectronic properties. We review recent progress in the fundamental understanding of the material properties and state of the art sub-bandgap infrared photodetectors. Different hyperdoping techniques are reviewed and compared, namely ion implantation followed by pulsed laser melting (PLM) or other fast annealing methods and PLM of Si with a dopant precursor. We review data available in the literature for material properties related to the success of optoelectronic devices such as the charge carrier lifetime, mobility, and sub-bandgap light absorption of hyperdoped Si with different dopants. To maximize carrier generation and collection efficiency in a sub-bandgap photodetector, charge carrier lifetimes must be long enough to be transported through the hyperdoped layer, which should be on the order of light absorption depth. Lastly, the charge transport properties and photodetector responsivities of hyperdoped Si based photodiodes at room temperature and at cryogenic temperatures are compared. The charge carrier transport mechanisms at different temperature ranges and in different dopant systems are discussed. At room temperature, despite different dopant energetics and hyperdoped thicknesses, light detection exhibits similar spectral responsivities with a common cutoff around 0.5 eV, and at low temperatures, it extends further into the infrared range. The roles of the dopant energetics and process-induced defects are discussed. We highlight future material development directions for enhancing device performance.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.statuspub
dc.identifier.citationMeng-Ju Sher and Eric García Hemme 2023 Semicond. Sci. Technol. 38 033001
dc.identifier.doi10.1088/1361-6641/acb16b
dc.identifier.essn1361-6641
dc.identifier.officialurlhttps://doi.org/10.1088/1361-6641/acb16b
dc.identifier.relatedurlhttps://iopscience.iop.org/article/10.1088/1361-6641/acb16b
dc.identifier.urihttps://hdl.handle.net/20.500.14352/110962
dc.issue.number3
dc.journal.titleSemiconductor Science and Technology
dc.language.isoeng
dc.page.final033001-24
dc.page.initial033001-1
dc.publisherIOP Publishing
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116508RB-I00/ES/CONTACTOS SELECTIVOS EMERGENTES PARA CELULAS SOLARES DE SI SIN DOPADO FABRICADOS MEDIANTE PULVERIZACION DE ALTA PRESION/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-117498RB-I00/ES/MEJORA DE LA RESPUESTA DE FOTODETECTORES DE IR BASADOS EN SEMICONDUCTORES DEL GRUPO IV HIPERDOPADOS/
dc.relation.projectIDTED2021-30894B-C2
dc.rights.accessRightsrestricted access
dc.subject.cdu538.9
dc.subject.ucmFísica del estado sólido
dc.subject.unesco2211 Física del Estado Sólido
dc.titleHyperdoped silicon materials: from basic materials properties to sub-bandgap infrared photodetectors
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number38
dspace.entity.typePublication
relation.isAuthorOfPublication765f38c4-71cb-441b-b2a8-d88c5cdcf086
relation.isAuthorOfPublication.latestForDiscovery765f38c4-71cb-441b-b2a8-d88c5cdcf086

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hyperdoped silicon materials.pdf
Size:
7.55 MB
Format:
Adobe Portable Document Format

Collections