Colorimetric evaluation of 3D printing polymers exposed to accelerated aging for Cultural Heritage applications

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
John Wiley & Sons, Inc.
Google Scholar
Research Projects
Organizational Units
Journal Issue
3D printing has become a widespread technology that allows the creation of physical objects from different materials. The conservation and restoration of Cultural Heritage field has recently introduced this technology as a complement to its traditional methods. However, the main concern in the application of 3D printing in this context is the long-term behavior of the materials used. The key objective of this research was the identification of the suitability of 3D printing filaments for conservation purposes. The methodology followed in this study consisted of a selection of 13 3D printing filaments for Fused Deposition Modeling (FDM) technologies, which were tested and exposed to an accelerated aging procedure. In order to classify and recommend the materials that present better results, the properties of color, the glossiness, the pH and the Volatile Organic Compounds emission were investigated. This paper collects the results of the analyses carried out, focusing discussion on the colorimetric behavior. The results demonstrate the usefulness of some of the materials studied, highlighting the performance of EP as one of the most stable and reliable materials while Flex is one of the most changeable ones in the Cultural Heritage context. Even though this research provides an overview of the aging of the materials studied, further analyses should be performed to understand the chemical composition and its behavior when exposed to a long-lasting aging process.
[1] Lambert KF, Whitehead M, Betz M, Nutt J, Dubose C. An overview of 3-D printing for medical applications. Radiol Technol. 2022;93(4):356-365. [2] Fieldhouse S. CADCAM in Dentistry. Materials and methods:an overview for the dental team. Dent Update. 2021;48(8):671- 678. doi:10.12968/DENU.2021.48.8.671 [3] Alimi OA, Meijboom R. Current and future trends of additive manufacturing for chemistry applications: a review. J Mater Sci. 2021;56(30):16824-16850. doi:10.1007/s10853-021-06362-7 [4] Pant M, Pidge P, Nagdeve L, Kumar H. A review of additive manufacturing in aerospace application. Rev des Compos des Mater Av. 2021;31(2):109-115. doi:10.18280/RCMA.310206 [5] Bellini A, Güçeri S. Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyp J. 2003;9(4):252-264. doi:10.1108/13552540310489631 [6] Shanmugam V, Pavan MV, Babu K, Karnan B. Fused deposition modeling based polymeric materials and their performance: a review. Polym Compos. 2021;42:5656-5677. doi:10.1002/PC.26275 [7] Oviedo AM, Puente AH, Bernal C, Pérez E. Mechanical evaluation of polymeric filaments and their corresponding 3D printed samples. Polym Test. 2020;88:106561. doi:10.1016/j. polymertesting.2020.106561 [8] Darıcık F, Delibas H, Gö Khan Canbolat D, Topcu A. Effects of short-term thermal aging on the fracture behavior of 3Dprinted polymers. J Mater Eng Perform. 2021;12:1-8. doi:10.1007/S11665-021-06374-Z [9] Balletti C, Ballarin M, Guerra F. 3D printing: state of the art and future perspectives. J Cult Herit. 2017;26:172-182. doi:10.1016/j.culher.2017.02.010 [10] Sathish K, Kumar SS, Magal RT, et al. A comparative study on subtractive manufacturing and additive manufacturing. Adv Mater Sci Eng. 2022;2022:1-8. doi:10.1155/2022/6892641 [11] Korres G, Anagnostopoulos C-N, Eid M. A proposed framework for affordable CAM replication in cultural heritage. J Phys Conf Ser. 2022;2204(1):012028. doi:10.1088/1742-6596/2204/1/012028 [12] Gibson I, Rosen D, Stucker B. Additive Manufacturing Technologies. 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Springer-Verlag; 2015. doi:10.1007/978-1-4939-2113-3 [13] Kafle A, Luis E, Silwal R, Pan HM, Shrestha PL, Bastola AK. 3D/4D printing of polymers: fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA). Polymers (Basel). 2021;13(18):3101. doi:10.3390/POLYM13183101 [14] Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B Eng. 2018;143:172-196. doi:10.1016/J.COMPOSITESB.2018.02.012 [15] Srinivasan D, Meignanamoorthy M, Ravichandran M, et al. 3D printing manufacturing techniques, materials, and applications: an overview. Adv Mater Sci Eng. 2021;2021:1-10. doi:10.1155/2021/5756563 [16] Kristiawan RB, Imaduddin F, Ariawan D, Ubaidillah AZ. A review on the fused deposition modeling (FDM) 3D printing: filament processing, materials, and printing parameters. Open Eng. 2021;11(1):639-649. doi:10.1515/ENG-2021-0063/MACHINEREADABLECITATION/RIS [17] Liu M. Application of 3D printing technology in the production of modern complex structure sculpture. Acta Tech. 2017;62(1A):331-340. Accessed March 3, 2022 [18] Antlej K, Eric M, Savnik M, Zupanek B, Slabe J, Battestin B. Combining 3D technologies in the field of Cultural Heritage: three case studies. In: 12th International Symposium on Virtual Reality, Archaeology and Cultural Heritage; 2011, 1–4. [19] Karaduman H, Alan Ü, Yi�git EÖ. Beyond “do not touch”: the experience of a three-dimensional printed artifacts museum as an alternative to traditional museums for visitors who are blind and partially sighted. Univ Access Inf Soc. 2022;1:1-14.doi:10.1007/S10209-022-00880-0 [20] Balletti C, Ballarin M. An application of integrated 3D technologies for replicas in cultural heritage. ISPRS Int J Geo-Inf. 2019;8(6):285. doi:10.3390/ijgi8060285 [21] Bonora V, Tucci G, Meucci A, Pagnini B. Photogrammetry and 3D printing for marble statues replicas: critical issues and assessment. Sustainability. 2021;13(2):680. doi:10.3390/ su13020680 [22] Seixas ML, Assis PS, Figueiredo JCD, Pinto MA, Paula DGC. The use of rapid prototyping in the joining of fractured historical silver object. Rapid Prototyp J. 2018;24(3):532-538. doi:10.1108/RPJ-09-2016-0148 [23] Hernandez-Muñoz Ó, Sanchez-Ortiz A. Digitalizaci on e impresion 3D para la reconstrucci on de pérdidas volumétricas en un modelo anat omico de cera del siglo XVIII. Conserv Patrim. 2019;30:59-72. doi:10.14568/cp2018003 [24] Díaz-Marín C, Aura-Castro E. Making 3D implants for conservation and restoration of archaeological glass. Virtual Archaeol Rev. 2017;8(16):103-109. doi:10.4995/var.2017.5946 [25] Fantini M, De Crescenzio F, Persiani F, Benazzi S, Gruppioni G. 3D restitution, restoration and prototyping of a medieval damaged skull. Rapid Prototyp J. 2008;14(5): 318-324. [26] Arbace L, Sonnino E, Callieri M, et al. Innovative uses of 3D digital technologies to assist the restoration of a fragmented terracotta statue. J Cult Herit. 2013;14(4):332-345. doi:10.1016/j.culher.2012.06.008 [27] Jafferson JM, Chatterjee D. A review on polymeric materials in additive manufacturing. Mater Today Proc. 2021;46:1349-1365. doi:10.1016/J.MATPR.2021.02.485 [28] Ahmed Mohamed O, Hasan Masood S, Lal Bhowmik J, et al. A review of recently developed polymer composite materials for fused deposition modeling 3D printing. Mater Res Express. 2021;8(12):122001. doi:10.1088/2053-1591/AC3B13 [29] Fico D, Rizzo D, Casciaro R, Corcione CE. A review of polymer-based materials for fused filament fabrication (FFF): focus on sustainability and recycled materials. Polymers(Basel). 2022;14(3):465. doi:10.3390/POLYM14030465 [30] Rett JP, Traore YL, Ho EA. Sustainable materials for fused deposition modeling 3D printing applications. Adv Eng Mater. 2021;23(7):2001472. doi:10.1002/ADEM.202001472 [31] Thakar CM, Parkhe SS, Jain A, Phasinam K, Murugesan G, Ventayen RJM. 3d printing: basic principles and applications. Mater Today Proc. 2022;51:842-849. doi:10.1016/J.MATPR.2021.06.272 [32] Cruz Sanchez FA, Boudaoud H, Camargo M, Pearce JM. Plastic recycling in additive manufacturing: a systematic literature review and opportunities for the circular economy. J Clean Prod. 2020;264:121602. doi:10.1016/J.JCLEPRO.2020.121602 [33] Cimino D, Rollo G, Zanetti M, Bracco P. 3d printing technologies: are their materials safe for conservation treatments? IOP Conf Ser Mater Sci Eng. 2018;364(1):012029. doi:10.1088/1757-899X/364/1/012029 [34] Coon C, Pretzel B, Lomax T, Strlic M. Preserving rapid prototypes: a review. Herit Sci. 2016;4(1):1-16. doi:10.1186/s40494-016-0097-y [35] Aura-Castro E, Díaz-Marín C, Mas-Barberà X, Anchez MS, Vidal EV. Characterization of 3d printing filaments applied in restoration of sensitive archaeological objects using rapid [36] Lazzari M, Reggio D. What fate for plastics in artworks? An overview of their identification and degradative behaviour. Polymers (Basel). 2021;13(6):883. doi:10.3390/polym13060883 [37] Maxwell AS, Broughton WR, Dean G, Sims GD. Review of Accelerated Ageing Methods and Lifetime Prediction Techniques for Polymeric Materials; 2005. [38] Amza CG, Zapciu A, Baciu F, Vasile MI, Nicoara AI. Accelerated aging effect on mechanical properties of common 3Dprinting polymers. Polymers (Basel). 2021;13(23):4132. doi:10.3390/POLYM13234132 [39] SmartMaterials 3D. Accessed November 23, 2020. [40] Korenberg C, Keable M, Phippard J, Doyle A. Refinements introduced in the oddy test methodology. Stud Conserv. 2018; 63(1):2-12. doi:10.1080/00393630.2017.1362177 [41] Curran K, Strlic M. Polymers and volatiles: using VOC analysis for the conservation of plastic and rubber objects. Stud Conserv. 2015;60(1):1-14. doi:10.1179/2047058413Y.0000000125 [42] Díaz I, Cano E. Quantitative Oddy test by the incorporation of the methodology of the ISO 11844 standard: a proof of concept. J Cult Herit. 2022;57:97-106. doi:10.1016/J.CULHER.2022.08.001 [43] Simonot L, Elias M. Color change due to surface state modification. Color Res Appl. 2003;28(1):45-49. doi:10.1002/col.10113 [44] ISO 11664-2:2007(E)/CIE S014-2/E:2006. Colorimetry. Part 2: CIE standard illuminants. [45] ISO 11664-1:2019. Colorimetry. Part 1: CIE standard colorimetric observers. [46] ISO/CIE 11664-4:2019. Colorimetry—Part 4: CIE 1976 L*a*b* color space. [47] Carter EC, Ohno Y, Pointer MR, et al., eds. Colorimetry. 3rd ed.; 2004 (CIE 015): International Commission onIllumination. [48] ISO/CIE 11664-3:2019. Colorimetry—Part 3: CIE Tristimulus values. [49] ISO/CIE 11664-6:2014. Colorimetry—Part 6: CIEDE2000 Colour-Difference Formula. [50] Tolerancia Parte 3: Espacio de color vs. Tolerancia al color | XRite. Accessed January 12, 2023. [51] Noobs JH. A lightness, chroma and hue splitting approach to CIEDE2000 colour differences. Adv Colour Sci Technol. 2002;5(2):46-53. Accessed June 27, 2022 [52] Melgosa M, Collado-Montero FJ, Fernandez E, Medina VJ. Estudio colorimétrico de los azulejos del Patio de las Doncellas del Real Alcazar de Sevilla. Bol la Soc Esp Ceram y Vidr. 2015;54(3):109-118. doi:10.1016/j.bsecv.2015.03.002 [53] Collado-Montero FJ, Espejo-Arias T. A colorimetric characterization and assessment of the chromatic deterioration of the medieval manuscript Registro Notarial de Torres in the Archivesof the Royal Chancellery in Granada, Spain. Restaur Int J Preserv Libr Arch Mater. 2015;36(2):121-145. doi:10.1515/res-2014-0008 [54] Della Patria A, Pezzati L, Acquaviva S, D'Anna ED, Giorgi ML. Effetti della radiazione laser nell'UV sulle variazioni di dipinti su legno. Color e Color Contrib Multidiscip Quad di Fotonica e Ottica. 2007;16:33-43. [55] Prestileo F, Bruno G, Alberghina MF, Schiavone S, Pellegrino L. No TitleI mosaici della villa romana del Casale di Piazza Armerina: il contributo delle indagini colorimetriche per la stesura del protocollo di intervento. Color e Color Contrib Multidiscip Quad di Fotonica e Ottica. 2007;2007:45-55. [56] Acquaviva S, D'Anna ED, Giorgi ML, Della Patria A, Fantuzzi M. Stabilità di coloranti vegetali su tessuti. Color e Color Contrib Multidiscip Quad di Fotonica e Ottica. 2010;19:203-212. [57] L opez-Martínez T, Collado-Montero FJ, García-Bueno A. Consolidation tests in archaeological wall painting: comparing treatments depending on the painting technique. Conserv Patrim. 2022;39:33-44. doi:10.14568/cp2020040 [58] Luo MR, Cui G, Rigg B. The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Res Appl. 2001; 26(5):340-350. doi:10.1002/col.1049 [59] Sharma G, Wu W, Dalal EN. The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations. Color Res Appl. 2005;30(1):21-30. doi:10.1002/col.20070 [60] Johnson GM, Fairchild MD. A top down description of SCIELAB and CIEDE2000. Color Res Appl. 2003;28(6):425-435. doi:10.1002/col.10195 [61] Hauptmann M, Pleschberger H, Mai C, Follrich J, Hansmann C. The potential of color measurements with the CIEDE2000 equation in wood science. Eur J Wood Wood Prod. 2012;70(4):415-420. doi:10.1007/s00107-011-0575-6 [62] Liu H, Huang M, Cui G, Luo MR, Melgosa M. Color-difference evaluation for digital images using a categorical judgment method. J Opt Soc Am A. 2013;30(4):616-626. doi:10.1364/josaa.30.000616 [63] Berns RS, Billmeyer FW, Saltzman M. Billmeyer and Saltzman's Principles of Color Technology; 2002: Wiley. [64] Melgosa M, Hita E, Romero J, del Barco LJ. Colordiscrimination thresholds translated from the CIE (x, y, Y) space to the CIE 1976 (L*, a*, b*). Color Res Appl. 1994;19(1):10-18. doi:10.1111/j.1520-6378.1994.tb00054.x [65] Melgosa M, Hita E, Romero J, del Barco LJ. Some classical color differences calculated with new formulas. J Opt Soc Am A. 1992;9(8):1247. doi:10.1364/josaa.9.001247 [66] Huang M, Liu H, Cui G, Luo MR, Melgosa M. Evaluation of threshold color differences using printed samples. J Opt Soc Am A. 2012;29(6):883-891. doi:10.1364/josaa.29.000883 [67] Melgosa M, Cui G, Oleari C, et al. Revisiting the weighting function for lightness in the CIEDE2000 colour-difference formula. Color Technol. 2017;133(4):273-282. doi:10.1111/cote.12294