Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Some properties of global semianalytic subsets of coherent surfaces

dc.contributor.authorAndradas Heranz, Carlos
dc.contributor.authorDíaz-Cano Ocaña, Antonio
dc.date.accessioned2023-06-20T09:31:46Z
dc.date.available2023-06-20T09:31:46Z
dc.date.issued2004
dc.description.abstractLet X subset of R-n be a coherent analytic surface. We show that the connected components of global analytic subsets of X are global and we compute the stability index and Brocker's t-invariant of X. We also state a real Nullstellensatz for normal surfaces.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipRAAG
dc.description.sponsorshipDGES
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14762
dc.identifier.issn0019-2082
dc.identifier.officialurlhttp://www.math.uiuc.edu/~hildebr/ijm/summer04/final/diazcano.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49818
dc.issue.number2
dc.journal.titleIllinois Journal of Mathematics
dc.language.isoeng
dc.page.final537
dc.page.initial519
dc.publisherUniv Illinois Urbana-Champaign
dc.relation.projectIDHPRN-CT-2001-00271
dc.relation.projectIDBFM2002-04797
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordCoherent surfaces
dc.subject.keywordreal analytic sets
dc.subject.keywordanalytic functions.
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleSome properties of global semianalytic subsets of coherent surfaces
dc.typejournal article
dc.volume.number48
dcterms.referencesF. Acquistapace, F. Broglia, and M. Shiota, The niteness property and H�ormander- lojasiewicz inequality in global semianalytic sets, preprint available at http://www.uni-regensburg.de/Fakultaeten/nat_Fak_I/RAAG/. C. Andradas and E. Becker, A note on the real spectrum of analytic functions on an analytic manifold of dimension one, Real analytic and algebraic geometry (Trento, 1988), Lecture Notes in Math., vol. 1420, Springer, Berlin, 1990, pp. 1{21. C. Andradas, L. Br�ocker, and J. M. Ruiz, Constructible sets in real geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 33, Springer- Verlag, Berlin, 1996. C. Andradas and A. Daz-Cano, Closed stability index of excellent henselian local rings, Math. Z., to appear. C. Andradas, A. Daz-Cano, and J. M. Ruiz, The Artin-Lang property for normal real analytic surfaces, J. Reine Angew. Math. 556 (2003), 99{111. E. Becker, On the real spectrum of a ring and its application to semialgebraic geometry, Bull. Amer. Math. Soc. (N.S.) 15 (1986), 19{60. J. Bochnak, M. Coste, and M.-F. Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 36, Springer-Verlag, Berlin, 1998. J. Bochnak and J.-J. Risler, Le theoreme des zeros pour les varietes analytiques reelles de dimension 2, Ann. Sci. Ecole Norm. Sup. (4) 8 (1975), 353{363. L. Br�ocker, On basic semialgebraic sets, Exposition. Math. 9 (1991), 289{334. F. Broglia and F. Pieroni, Separation of global semianalytic subsets of 2-dimensional analytic manifolds, Pacic J. Math. 214 (2004), 1{16. F. Bruhat and H. Whitney, Quelques proprietes fondamentales des ensembles analytiques-reels, Comment. Math. Helv. 33 (1959), 132{160. A. Castilla, Artin-Lang property for analytic manifolds of dimension two, Math. Z. 217 (1994), 5{14. A. Castilla and C. Andradas, Connected components of global semianalytic subsets of 2-dimensional analytic manifolds, J. Reine Angew. Math. 475 (1996), 137{148. A. Daz-Cano, The t-invariant of analytic set germs of dimension 2, J. Pure Appl. Algebra 160 (2001), 157{168. A. Daz-Cano and C. Andradas, Complexity of global semianalytic sets in a real analytic manifold of dimension 2, J. Reine Angew. Math. 534 (2001), 195{208. M. Galbiati, Sur l'image d'un morphisme analytique reel propre, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), 311{319. P. Jaworski, The 17th Hilbert problem for noncompact real analytic manifolds, Real algebraic geometry (Rennes, 1991), Lecture Notes in Math., vol. 1524, Springer, Berlin, 1992, pp. 289{295. T. Y. Lam, An introduction to real algebra, Rocky Mountain J. Math. 14 (1984), 767{814. M. A. Marshall, Spaces of orderings and abstract real spectra, Lecture Notes in Mathematics, vol. 1636, Springer-Verlag, Berlin, 1996. J. M. Ruiz, On Hilbert's 17th problem and real Nullstellensatz for global analytic functions, Math. Z. 190 (1985), 447{454.
dspace.entity.typePublication
relation.isAuthorOfPublicationa74c23fe-4059-4e73-806b-71967e14ab67
relation.isAuthorOfPublication134ad262-ecde-4097-bca7-ddaead91ce52
relation.isAuthorOfPublication.latestForDiscoverya74c23fe-4059-4e73-806b-71967e14ab67

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
05.pdf
Size:
324.21 KB
Format:
Adobe Portable Document Format

Collections