Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

DeepFair: Deep Learning for Improving Fairness in Recommender Systems

dc.contributor.authorBobadilla, Jesús
dc.contributor.authorLara Cabrera, Raúl
dc.contributor.authorGonzález Prieto, José Ángel
dc.contributor.authorOrtega, Fernando
dc.date.accessioned2024-02-08T21:59:20Z
dc.date.available2024-02-08T21:59:20Z
dc.date.issued2021
dc.description.abstractThe lack of bias management in Recommender Systems leads to minority groups receiving unfair recommendations. Moreover, the trade-off between equity and precision makes it difficult to obtain recommendations that meet both criteria. Here we propose a Deep Learning based Collaborative Filtering algorithm that provides recommendations with an optimum balance between fairness and accuracy. Furthermore, in the recommendation stage, this balance does not require an initial knowledge of the users’ demographic information. The proposed architecture incorporates four abstraction levels: raw ratings and demographic information, minority indexes, accurate predictions, and fair recommendations. Last two levels use the classical Probabilistic Matrix Factorization (PMF) model to obtain users and items hidden factors, and a Multi-Layer Network (MLN) to combine those factors with a ‘fairness’ (ß) parameter. Several experiments have been conducted using two types of minority sets: gender and age. Experimental results show that it is possible to make fair recommendations without losing a significant proportion of accuracy.en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.statuspub
dc.identifier.doi10.9781/ijimai.2020.11.001
dc.identifier.officialurlhttps://dx.doi.org/10.9781/ijimai.2020.11.001
dc.identifier.relatedurlhttps://www.ijimai.org/journal/bibcite/reference/2862
dc.identifier.urihttps://hdl.handle.net/20.500.14352/100642
dc.journal.titleInternational Journal of Interactive Multimedia and Artificial Intelligence
dc.language.isoeng
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmEstadística aplicada
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco1209.03 Análisis de Datos
dc.titleDeepFair: Deep Learning for Improving Fairness in Recommender Systemsen
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublicationc3011bfd-5025-4e49-8f0e-e16ea76da35c
relation.isAuthorOfPublication.latestForDiscoveryc3011bfd-5025-4e49-8f0e-e16ea76da35c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ijimai_6_6_9_0.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format

Collections