Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A dimension theorem for real spectra

dc.contributor.authorRuiz Sancho, Jesús María
dc.date.accessioned2023-06-20T18:41:37Z
dc.date.available2023-06-20T18:41:37Z
dc.date.issued1989-08-01
dc.description.abstractIn this note, the author proves, in the context of excellent rings, two results on chains of specializations in the real spectrum and some corollaries about real dimension. The first result (Theorem I) is the following: let α0 be a point of SpecrA of dimension d0 in the closure of a constructible set S of real dimension d at α0; then there exists a chain of strict specializations of exactly d points αd→⋯→α0 entirely contained in S, specializing to α0. This theorem is in fact a full generalization, in that context, of the "curve selection lemma'' (which corresponds to the existence of α1 in the case d0=1). The second result (2.1) says that if A is an excellent local domain, any ordering of the fraction field inducing an ordering in the residue field extends to a "formal branch'' (that is, an irreducible component of the completion Â). Both results are simultaneously proved by induction on the Krull dimension of A [see also the author, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 2, 67–69].
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipC.T.C.V.T.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20222
dc.identifier.doi10.1016/0021-8693(89)90129-4
dc.identifier.issn0021-8693
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/0021869389901294
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58324
dc.issue.number2
dc.journal.titleJournal of Algebra
dc.language.isoeng
dc.page.final277
dc.page.initial271
dc.publisherAcademic Press
dc.relation.projectIDPB860062
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordExcellent ring
dc.subject.keywordreal spectrum
dc.subject.keyworddimension
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleA dimension theorem for real spectra
dc.typejournal article
dc.volume.number124
dcterms.referencesS. ABHYANKAR, On the valuations centered in a local domain, Amer. J. Math. 78 (1956), 321-348. J. BOCHNAK, M. COSTE, AND M. F. ROY, “Géométrie algébrique réelle,” Ergebnisse der Math. Vol. 12, Springer-Verlag, Berlin/New York (1987). N. BOURBAKI, “Commutative Algebra,” Hermann, Paris, 1972. M. COSTE, Sous-ensemble algébriques réels de codimension 1, C. R. Acad. Sci. 300, I, 19 (1985), 661-664. M. COSTE AND M. F. ROY, La topologie du spectre réel, Contemp. Math. 8 (1982), 27-59. T. Y. LAM, “Orderings, Valuations and Quadratic Forms,” Conf. Board Math. Sci., Vol. 52, Amer. Math. Soc., Providence, RI, 1983. H. MATSUMURA, “Commutative Algebra,” 2nd ed., Benjamin, New York, 1980. J. M. RUIZ, Cônes locaux et complétions, C.R. Acad. Sci. 302 I, 2 (1986), 67-69. J. C. TOUGERON, “Idéaux de fonctions différentiables,” Ergebnisse der Math. Vol. 71, Springer-Verlag, Berlin/New York, (1972).
dspace.entity.typePublication
relation.isAuthorOfPublicationf12f8d97-65c7-46aa-ad47-2b7099b37aa4
relation.isAuthorOfPublication.latestForDiscoveryf12f8d97-65c7-46aa-ad47-2b7099b37aa4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RuizSancho19.pdf
Size:
352.18 KB
Format:
Adobe Portable Document Format

Collections