Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Phase shift of amplitude-modulated optical signals in graphene oxide water dispersions due to thermal lens focal length oscillation

dc.contributor.authorMelle Hernández, Sonia
dc.contributor.authorGómez Calderón, Óscar
dc.contributor.authorEgatz-Gómez, Ana
dc.contributor.authorCabrera Granado, Eduardo
dc.contributor.authorCarreño Sánchez, Fernando
dc.contributor.authorSalavagione, H. J.
dc.contributor.authorAntón Revilla, Miguel Ángel
dc.date.accessioned2023-06-19T14:54:30Z
dc.date.available2023-06-19T14:54:30Z
dc.date.issued2014-04-08
dc.descriptionEste documento es la versión postprint del artículo. © 2014 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.
dc.description.abstractWe analyze the phase shift induced in an amplitude-modulated laser beam propagating through a water dispersion of graphene oxide sheets in a fiber-to-fiber U-bench. This phase shift arises from the thermally induced nonlinear refraction in the sample. The system exhibits strong optical limiting performance for weak continuous-wave signals. A theoretical model including beam propagation and thermal lens focal length oscillation reproduces the experimental findings.
dc.description.departmentSección Deptal. de Óptica (Óptica)
dc.description.facultyFac. de Óptica y Optometría
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación, MICINN
dc.description.sponsorshipMinisterio de Economía y Competitividad, MINECO
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30749
dc.identifier.doi10.1364/JOSAB.31.001018
dc.identifier.issn0740-3224
dc.identifier.officialurlhttp://dx.doi.org/10.1364/JOSAB.31.001018
dc.identifier.relatedurlhttps://www.osapublishing.org/josab/abstract.cfm?uri=josab-31-5-1018
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34709
dc.issue.number5
dc.journal.titleJournal of the Optical Society of America B
dc.language.isoeng
dc.page.final1025
dc.page.initial1018
dc.publisherOSA Publishing
dc.relation.projectIDprojects (FIS2010-22082)
dc.relation.projectID(MAT2009-09335)
dc.rights.accessRightsopen access
dc.subject.cdu535.57
dc.subject.cdu535.374
dc.subject.keywordNonlinear optics
dc.subject.keywordfibers
dc.subject.keywordThermal lensing
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titlePhase shift of amplitude-modulated optical signals in graphene oxide water dispersions due to thermal lens focal length oscillation
dc.typejournal article
dc.volume.number31
dcterms.references1. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39, 228–240 (2009). 2. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2, 1015–1024 (2010). 3. M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, and M. Ohba, “Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles,” Carbon 42, 2929–2937 (2004). 4. J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene oxide dispersions in organic solvents,” Langmuir 24, 10560–10564 (2008). 5. S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nat. Nanotechnol. 4, 217–224 (2009). 6. S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood, and C. N. R. Rao,“Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95, 191911 (2009). 7. Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94, 021902 (2009). 8. J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21, 2430–2435 (2009). 9. M. Feng, H. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett. 96, 033107 (2010). 10. N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013). 11. Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Zhang, and Y. Chen, “A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property,” Adv. Mater. 21, 1275–1279 (2009). 12. R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett. 11, 5159–5164 (2011). 13. X.-L. Zhang, Z.-B. Liu, X.-C. Li, Q. Ma, X.-D. Chen, J.-G. Tian, Y.-F. Xu, and Y.-S. Chen, “Transient thermal effect, nonlinear refraction and nonlinear absorption properties of graphene oxide sheets in dispersion,” Opt. Express 21, 7511–7520 (2013). 14. J. Li, Y. Zhang, H. Li, C. Yao, and P. Yuan, “Observation of tunable superluminal propagation in the single-layer graphene oxide solution,” Opt. Commun. 295, 226–229 (2013). 15. X. Zhao, Z.-B. Liu, W.-B. Yan, Y. Wu, X.-L. Zhang, Y. Chen, and J.-G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98, 121905 (2011). 16. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003). 17. F. Arrieta-Yáñez, O. G. Calderón, and S. Melle, “Fast light based on excited-state absorption in erbium doped fibers,” in IONS 9 International OSA Network of Students (Optical Society of America, 2011). 18. G. S. Agarwal and T. N. Dey, “Sub- and superluminal propagation of intense pulses in media with saturated and reverse absorption,” Phys. Rev. Lett. 92, 203901 (2004). 19. H. Wang, Y. Zhang, N. Wang, W. Yan, H. Tian, W. Qiu, and P. Yuan, “Observation of superluminal propagation at negative group velocity in C60 solution,” Appl. Phys. Lett. 90, 121107 (2007). 20. G. Leonard, “Free carrier absorption in graphene oxide thin film,” B.S. thesis (National University of Singapore, 2012), http://www.physics.nus.edu.sg/student/Honours ProjectsRepository/leonard Goh fyp‑final.pdf. 21. S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, 1996). 22. D. Rojas, R. J. Silva, J. D. Spear, and R. E. Russo, “Dual-beam optical fiber thermal lens spectroscopy,” Anal. Chem. 63, 1927–1932 (1991). 23. M. Franko and C. D. Tran, Encyclopedia of Analytical Chemistry: Thermal Lens Spectroscopy (Wiley, 2010). 24. C. Estupiñán-López, C. T. Dominguez, and R. de Araujo, “Eclipsing thermal lens spectroscopy for fluorescence quantum yield measurement,” Opt. Express 21, 18592–18601 (2013). 25. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003), Chap. 4.5. 26. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965). 27. J. R. Whinney, “Laser measurement of optical absorption in liquids,” Acc. Chem. Res. 7, 225–231 (1974). 28. C. Hu and J. R. Whinnery, “New thermooptical measurement method and a comparison with other methods,” Appl. Opt. 12, 72–79 (1973). 29. S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt. 21, 1663–1669 (1982). 30. S. E. Bialkowski and A. Chartier, “Diffraction effects in singleand two-laser photothermal lens spectroscopy,” Appl. Opt. 36, 6711–6721 (1997). 31. L. C. Malacarne, N. G. C. Astrath, and L. S. Herculano, “Laserinduced wavefront distortion in optical materials: a general model,” J. Opt. Soc. Am. B 29, 3355–3359 (2012). 32. American Institute of Physics Handbook (McGraw-Hill, 1957), Sections 4g and 6b. 33. A. E. Siegman, Lasers (University Science Books, 1986). 34. A. Sennaroglu, “Effect of thermal lensing on the mode matching between pump and laser beams in Cr4+: forsterite lasers: a numerical study,” J. Phys. D 33, 1478–1483 (2000). 35. B.-X. Wang, L.-P. Zhou, and X.-F. Peng, “A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles,” Int. J. Heat Mass Transfer 46, 2665–2672 (2003). 36. C. Liu, Z. Wang, H. Jia, and Z. Li, “Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide: a highly sensitive biosensing platform,” Chem. Commun. 47, 4661–4663 (2011).
dspace.entity.typePublication
relation.isAuthorOfPublication6080119e-4199-4330-a163-3f58a24a1160
relation.isAuthorOfPublicatione3951eb6-c03f-4cc1-b643-8450fedd1f67
relation.isAuthorOfPublicationf63bf5d8-27d6-4a43-876d-a41e00c683bc
relation.isAuthorOfPublication70ad6ca8-0e1b-49d4-a046-8d693ca88c5a
relation.isAuthorOfPublicationa59c3727-c018-4ce7-84d5-24f3a2f3de79
relation.isAuthorOfPublication.latestForDiscovery6080119e-4199-4330-a163-3f58a24a1160

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
phase shift of amplitude 2014-postprint.pdf
Size:
458.7 KB
Format:
Adobe Portable Document Format

Collections