Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Origin of constant loss in ionic conductors

dc.contributor.authorLeón Yebra, Carlos
dc.contributor.authorRivera Calzada, Alberto Carlos
dc.contributor.authorVárez, A.
dc.contributor.authorSanz, J.
dc.contributor.authorSantamaría Sánchez-Barriga, Jacobo
dc.date.accessioned2023-06-20T20:07:59Z
dc.date.available2023-06-20T20:07:59Z
dc.date.issued2001-02-12
dc.description© 2001 The American Physical Society. The authors thank H. Jain for providing experimental data of the lithium silicate glass. Financial support from CICYT Grant No. MAT98-1053-C04 is also acknowledged. K. L. N. is supported by ONR.
dc.description.abstractWe have analyzed the constant loss contribution to the ac conductivity in the frequency range 10 Hz–1 MHz and temperatures down to 8 K, for two Li ionic conductors, one crystalline (Li_(0.18)La_(0.61)TiO_(3)) and the other glassy (61SiO_(2) . 35Li_(2)O . 3Al_(2)O_(3) . P_(2)O_85)). As temperature is increased a crossover is observed from a nearly constant loss to a fractional power law frequency dependence of the ac conductivity. At any fixed frequency ω, this crossover occurs at a temperature T such that ω = v_(0) exp(-E_(m)/k_(B)T), where v_(0) is the attempt frequency and E_(m) is identified with the barrier for Li^(+) ions to leave their wells.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT
dc.description.sponsorshipONR
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/31133
dc.identifier.doi10.1103/PhysRevLett.86.1279
dc.identifier.issn0031-9007
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevLett.86.1279
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59639
dc.issue.number7
dc.journal.titlePhysical review letters
dc.language.isoeng
dc.page.final1282
dc.page.initial1279
dc.publisherAmerican Physical Society
dc.relation.projectIDMAT98-1053-C04
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordNon-Arrhenius conductivity
dc.subject.keywordAC conductivity
dc.subject.keywordNonlinear lattices
dc.subject.keywordSlow relaxation
dc.subject.keywordOxide glasses
dc.subject.keywordTemperature
dc.subject.keywordDynamics
dc.subject.keywordSpectra
dc.subject.keywordMelts
dc.subject.keywordSpectroscopy.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleOrigin of constant loss in ionic conductors
dc.typejournal article
dc.volume.number86
dcterms.references[1] C. A. Angell, Chem. Rev., 90, 523 (1990). [2] See the collection of papers in J. Non-Cryst. Solids, 131–133 (1991) --- ibid., 172–174 (1994) --- ibid., 235–238 (1998). [3] K. L. Ngai, J. Non-Cryst. Solids, 203, 232 (1996). [4] B. Roling, A. Happe, K. Funke, M. D. Ingram, Phys. Rev. Lett., 78, 2160 (1997). [5] P. Lunkenheimer, A. Pimenov, A. Loidl, Phys. Rev. Lett., 78, 2995 (1997). [6] C. León, M. L. Lucia, J. Santamaria, F. Sánchez-Quesada, Phys. Rev. B, 57, 41 (1998). [7] K. L. Ngai, C. T. Moynihan, Bull. Mater. Res. Soc., 23, 51 (1998). [8] D. L. Sidebottom, Phys. Rev. Lett., 82, 3653 (1999). [9] K. L. Ngai, C. León, Phys. Rev. B, 60, 9396 (1999). [10] T. B. Schrøder, J. C. Dyre, Phys. Rev. Lett., 84, 310 (2000). [11] A. Ghosh, A. Pan, Phys. Rev. Lett., 84, 2188 (2000). [12] A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983). [13] J. Wong, C. A. Angell, Glass Structure by Spectroscopy (Dekker, New York, 1976). [14] A. Burns, G. D. Chryssikos, E. Tombari, R. H. Cole, W. M. Risen, Phys. Chem. Glasses, 30, 264 (1989). [15] W. K. Lee, J. F. Liu, A. S. Nowick, Phys. Rev. Lett., 67, 1559 (1991). [16] C. Cramer, K. Funke, T. Saatkamp, Philos. Mag. B, 71, 701 (1995). [17] K. L. Ngai, H. Jain, O. Kanert, J. Non-Cryst. Solids, 222, 383 (1997). [18] K. L. Ngai, J. Chem. Phys., 110, 10 576 (1999). [19] C. León, M. L. Lucía, J. Santamaría, Phys. Rev. B, 55, 882 (1997). [20] A. S. Nowick, A. V. Vaysleb, W. Liu, Solid State Ionics, 105, 121 (1998). [21] D. L. Sidebottom, P. F. Green, R. K. Brow, Phys. Rev. Lett., 74, 5068 (1995). [22] H. Jain, X. Lu, J. Non-Cryst. Solids, 196, 285 (1996). [23] F. Borsa, D. R. Torgeson, S. W. Martin, H. K. Patel, Phys. Rev. B, 46, 795 (1992). [24] K. L. Ngai, Phys. Rev. B, 48, 13 481 (1993). [25] Y. Inaguma, L. Chen, M. Itoh, T. Nakamura, T. Uchida, M. Ikuta, M. Wakihara, Solid State Commun., 86, 689 (1993). [26] C. León, M. L. Lucia, J. Santamaría, M. A. Paris, J. Sanz, A. Várez, Phys. Rev. B, 54, 184 (1996). [27] C. León, J. Santamaría, M. A. Paris, J. Sanz, J. Ibarra, L. M. Torres, Phys. Rev. B, 56, 5302 (1997). [28] J. A. Alonso, J. Sanz, J. Santamaría, C. León, A. Várez, M. T. Fernández, Angew. Chem. Int. Ed. Engl., 39, 619 (2000). [29] J. Kincs, S.W. Martin, Phys. Rev. Lett., 76, 70 (1996). [30] K. L. Ngai, A. K. Rizos, Phys. Rev. Lett., 76, 1296 (1996). [31] P. Maass, M. Meyer, A. Bunde, W. Dieterich, Phys. Rev. Lett., 77, 1528 (1996). [32] K. L. Ngai, G. N. Greaves, C. T. Moynihan, Phys. Rev. Lett., 80, 1018 (1998). [33] C. H. Hsieh, H. Jain, J. Non-Cryst. Solids, 203, 293 (1996). [34] G. P. Tsironis, S. Aubry, Phys. Rev. Lett., 77, 5225 (1996). [35] A. Bikaki, N. K. Voulgarakis, S. Aubry, G. P. Tsironis, Phys. Rev. E, 59, 1234 (1999). [36] S. Flach, G. Mutschke, Phys. Rev. E, 49, 5018 (1994).
dspace.entity.typePublication
relation.isAuthorOfPublication213f0e33-39f1-4f27-a134-440d5d16a07c
relation.isAuthorOfPublication65d45b0a-357f-4ec4-9f97-0ffd3e1cbdcc
relation.isAuthorOfPublication75fafcfc-6c46-44ea-b87a-52152436d1f7
relation.isAuthorOfPublication.latestForDiscovery213f0e33-39f1-4f27-a134-440d5d16a07c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LeonC103libre.pdf
Size:
102.44 KB
Format:
Adobe Portable Document Format

Collections