Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Unconditional constants and polynomial inequalities

dc.contributor.authorGrecu, B.C.
dc.contributor.authorMuñoz-Fernández, Gustavo A.
dc.contributor.authorSeoane Sepúlveda, Juan Benigno
dc.date.accessioned2023-06-20T00:18:49Z
dc.date.available2023-06-20T00:18:49Z
dc.date.issued2009-12
dc.description.abstractIf P is a polynomial on R of degree at most n, given by P(x) = Sigma(alpha is an element of Nm,vertical bar alpha vertical bar <= n) a(alpha)x(alpha), and P(n)(R(m)) is the space of such polynomials, then we define the polynomial vertical bar P vertical bar by vertical bar P vertical bar(x) = Sigma(alpha is an element of Nm,vertical bar alpha vertical bar <= n) vertical bar a(alpha vertical bar)x(alpha). Now if B subset of R(m) is a convex set, we define the norm parallel to P parallel to(B) := sup{vertical bar(x)vertical bar : x is an element of B} on P(n)(R(m)), and then we investigate the inequality vertical bar vertical bar vertical bar P vertical bar vertical bar vertical bar(B) <= C(B)vertical bar vertical bar vertical bar P vertical bar vertical bar vertical bar(B), providing sharp estimates on C(B) for some specific spaces of polynomials. These C(B)'s happen to be the unconditional constants of the canonical bases of the considered spaces.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMarie Curie Intra European Fellowship
dc.description.sponsorshipSpanish Ministry of Education
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16967
dc.identifier.doi10.1016/j.jat.2008.12.001
dc.identifier.issn0021-9045
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S002190450800258X
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42379
dc.issue.number2
dc.journal.titleJournal of Approximation Theory
dc.language.isoeng
dc.page.final722
dc.page.initial706
dc.publisherAcademic Press- Elsevier Science
dc.relation.projectIDMEIF-CT-2005-006958
dc.relation.projectIDMTM 2006-03531
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordUnconditional constant
dc.subject.keywordPolynomial inequalities
dc.subject.keywordTrinomials
dc.subject.keywordHomogeneous polynomials
dc.subject.keywordExtreme points
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleUnconditional constants and polynomial inequalities
dc.typejournal article
dc.volume.number161
dcterms.referencesHarold P. Boas, Majorant series, J. Korean Math. Soc. 37 (2) (2000) 321–337. Several complex variables (Seoul, 1998). Yun Sung Choi, Sung Guen Kim, The unit ball of P.2l2 2 /, Arch. Math. (Basel) 71 (6) (1998) 472–480. Yun Sung Choi, Sung Guen Kim, Haseo Ki, Extreme polynomials and multilinear forms on l1, J. Math. Anal. Appl. 228 (2) (1998) 467–482. Andreas Defant, Juan Carlos D´ıaz, Domingo Garc´ıa, Manuel Maestre, Unconditional basis and Gordon–Lewis constants for spaces of polynomials, J. Funct. Anal. 181 (1) (2001) 119–145. Andreas Defant, Leonhard Frerick, A logarithmic lower bound for multi-dimensional Bohr radii, Israel J. Math. 152 (2006) 17–28. Andreas Defant, Domingo García, Manuel Maestre, Bohr’s power series theorem and local Banach space theory, J. Reine Angew. Math. 557 (2003) 173–197. Andreas Defant, Domingo García, Manuel Maestre, Estimates for the first and second Bohr radii of Reinhardt domains, J. Approx. Theory 128 (1) (2004) 53–68. Andreas Defant, Christopher Prengel, Harald Bohr meets Stefan Banach, in: Methods in Banach Space Theory, in: London Math. Soc. Lecture Note Ser., vol. 337, Cambridge Univ. Press, Cambridge, 2006, pp. 317–339. Bao Qi Feng, Andrew Tonge, Equivalence constants for certain matrix norms. II, Linear Algebra Appl. 420 (2–3) (2007) 388–399. Bogdan C. Grecu, Geometry of 2-homogeneous polynomials on l p spaces, 1 < p < 1, J. Math. Anal. Appl. 273 (2) (2002) 262–282. Ren Cang Li, Norms of certain matrices with applications to variations of the spectra of matrices and matrix pencils, Linear Algebra Appl. 182 (1993) 199–234. Gustavo A. Muñoz-Fernández, Szilard Revesz, Juan B. Seoane-Sepúlveda, Geometry of homogeneous polynomials on non-symmetric convex bodies, Math. Scand (in press). Gustavo A. Muñoz-Fernández, Juan B. Seoane-Sepúlveda, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl. 340 (2) (2008) 1069–1087. Stefan Neuwirth, The sidon constant of sets of three elements. arXiv:math.CA/0102145v1. I. Sarantopoulos, Estimates for polynomial norms on L p. / spaces, Math. Proc. Cambridge Philos. Soc. 99 (2) (1986) 263–271. Dursun Tas¸ci, On a conjecture by Goldberg and Newman, Linear Algebra Appl. 215 (1995) 275–277.
dspace.entity.typePublication
relation.isAuthorOfPublicatione85d6b14-0191-4b04-b29b-9589f34ba898
relation.isAuthorOfPublication.latestForDiscoverye85d6b14-0191-4b04-b29b-9589f34ba898

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MunozFer10.pdf
Size:
723 KB
Format:
Adobe Portable Document Format

Collections