Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the uniqueness of the solution of the evolution dam problem

dc.contributor.authorCarrillo Menéndez, José
dc.date.accessioned2023-06-20T16:53:38Z
dc.date.available2023-06-20T16:53:38Z
dc.date.issued1994-03
dc.description.abstractThe purpose here is to investigate some aspects of the evolution dam problem $\partial(\chi+\alpha u)/\partial t=\Delta u+{\rm div}(\chi e)$ in $Q$, $\chi\in H(u)$ in $Q$, $u\geq 0$ in $Q$, $u=\phi$ in $\Sigma_2$, $\partial u/\partial v+\chi ev\leq 0$ on $\Sigma_2\cap \{\phi=0\}$, $e\in {\bf R}^n$, $e=(0,\cdots, 0,1)$, $\partial u/\partial v+\chi ev=0$ on $\Sigma_1$. Here $H$ is the Heaviside maximal graph $H(s)=1$ if $s>0$, $H(s)=[0,1]$ if $s=0$, $\alpha$ is the storativity constant: $\alpha=0$ if the fluid is incompressible and $\alpha>0$ if the fluid is compressible. Also $Q=\Omega\times (0,T)$ where $\Omega$ is a bounded domain in ${\bf R}^n$ ($\Omega$ represents a porous medium separating a finite number of reservoirs) with Lipschitz boundary $G$ where $G$ is divided into two parts: $G_1$, which is the impervious part, and $G_2$, which is the pervious part, with the following assumptions: $G_2$ is an open subset of $G$, $G_2\not=\emptyset$, $G_2\cap G_1=\emptyset$, $G_2\cup G_1=G$ and $e\nu\leq 0$ a.e. on $G_1$; $\Sigma_i$ denotes $G_i\times (0,T)$, $i=1,2$. The pressure at $\Sigma_2$ is known and is represented by a nonnegative function $\phi\in C^{0,1}(\overline Q)$. The above problem can be completed by prescribing an initial value to $\chi+\alpha u$. The existence of a weak solution of the evolution dam problem is well known; however, many properties of the solutions of the initial value dam problem, in particular, comparison and uniqueness theorems, continue to be open for a general domain $\Omega$. The results of this paper give precise information about the comparison (Theorem 4.7) and the uniqueness (Corollary 4.9) statements. The key point to prove comparison and uniqueness results is that the function $h\mapsto \chi(x',x_n+h, t-h)$, $x'\in{\bf R}^{n-1}$, is a.e. nonincreasing
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15598
dc.identifier.doi10.1016/0362-546X(94)90084-1
dc.identifier.issn0362-546X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/0362546X94900841
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57352
dc.issue.number5
dc.journal.titleNonlinear Analysis: Theory, Methods & Applications
dc.page.final607
dc.page.initial573
dc.publisherElsevier
dc.relation.projectIDPB90-0245
dc.rights.accessRightsmetadata only access
dc.subject.cdu517.9
dc.subject.keywordFree boundary problems
dc.subject.keywordFlows in porous media
dc.subject.keywordfiltration
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleOn the uniqueness of the solution of the evolution dam problem
dc.typejournal article
dc.volume.number22
dspace.entity.typePublication
relation.isAuthorOfPublication48ac980d-beb1-40b0-acec-caec3a109b1c
relation.isAuthorOfPublication.latestForDiscovery48ac980d-beb1-40b0-acec-caec3a109b1c

Download

Collections