Eta/s and phase transitions

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
We present a calculation of eta/s for the meson gas (zero baryon number), with the viscosity computed within unitarized next-to-leading-order chiral perturbation theory, and confirm the observation that eta/s decreases towards the possible phase transition to a quark-gluon plasma/liquid. The value is somewhat higher than previously estimated in leading-order chi PT. We also examine the case of atomic Argon gas to check the discontinuity of eta/s across a first-order phase transition. Our results suggest employing this dimensionless number, sometimes called KSS number (in analogy with other ratios in fluid mechanics such as Reynolds number or Prandtl number) to pin down the phase transition and critical end point to a crossover in strongly interacting nuclear matter between the hadron gas and quark and gluon plasma/liquid.
© 2009 The American Physical Society. We thank useful conversations and exchanges on eta/s with Jochen Wambach, Juan Maldacena, Dam Son, and Tom Cohen. This work has been supported by Grant Nos. FPA 2004-02602, 2005-02327, BSCH-PR34/0715875 (Spain)
Unesco subjects
1] L. P. Csernai, J. I. Kapusta, and L. D. McLerran, Phys. Rev.Lett. 97, 152303 (2006). [2] A. Dobado and F. J. Llanes-Estrada, Eur. Phys. J. C 49, 011 (2007). [3] J.W. Chen, Y. H. Li, Y. F. Liu, and E. Nakano, Phys. Rev. D 76, 114011 (2007). [4] J.W. Chen and E. Nakano, Phys. Lett. B 647, 371 (2007). [5] P. Kovtun, D. T. Son, and A. O. Starinets, J. High nergy Phys. 10 (2003) 064; P. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett. 94, 111601 (2005). [6] P. Danielewicz and M. Gyulassy, Phys. Rev. D 31, 53 (1985). [7] T. D. Cohen, Phys. Rev. Lett. 100, 029102 (2008). [8] D. T. Son, Phys. Rev. Lett. 100, 029101 (2008). [9] T. D. Cohen, Phys. Rev. Lett. 99, 021602 (2007). [10] T. Schafer, Phys. Rev. A 76, 063618 (2007). [11] S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97, 162302 (2006). [12] R. A. Lacey et al., Phys. Rev. Lett. 98, 092301 (2007). [13] R. A. Lacey et al., arXiv:nucl-ex/0708.3512. [14] F. Karsch, E. Laermann, and A. Peikert, Nucl. Phys. B605, 579 (2001). [15] A. Dobado and F. J. Llanes-Estrada, Phys. Rev. D 69, 116004 (2004). [16] A. Dobado, M. J. Herrero, and T. N. Truong, Phys. Lett. B 235, 134 (1990). [17] S. Weinberg, Physica A (Amsterdam) 96, 327 (1979); J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984). [18] A. Gomez Nicola and J. R. Pelaez, Phys. Rev. D 65, 054009 (2002). [19] D. Fernandez-Fraile and A. Gomez Nicola, Int. J. Mod. Phys. E 16, 3010 (2007); Eur. Phys. J. A 31, 848 (2007); Phys. Rev. D 73, 045025 (2006). [20] G. Aarts and J. M. Martinez Resco, J. High Energy Phys. 03 (2005) 074. [21] Note that this formula follows, up to the numerical factor, rom considering a classical nonrelativistic gas "eta" = 1/3n(mv)"landa" in terms of the mean free path "landa", the particle density n, and average momentum. The numerical factor requires a little more work with a transport equation and can be found, for example, in L. D. Landau and E. M. Lifshitz, Physical Kinetics (Pergamon Press, Elmsford, N.Y., 1981). [22] H. Eyring and T. Ree, Proc. Natl. Acad. Sci. U.S.A. 47, 526 (1961). [23] The meaning of the various variables can be found in [22] and is as follows. e = 2.71828 . . . is Neper’s number (the presence of a single e factor in the gas partition function comes from the Stirling’s approximation). E_s is the sublimation energy of Argon (that we express in eV=particle)."teta" is the Einstein characteristic temperature of the solid defined in any textbook. Here a = a ´(not to be confused with Van der Waals constant) is a model parameter, a pure-number, controlling the molecular jump between sites, or activation energy. nV/V_s is the number of nearest vacancies to which an atom can jump. [24] In this formula "k" is an ad-hoc model ‘‘transmission coefficient’’ of order 1 related to the loss of momentum to a crystal wave upon displacing an atom. Here we take it to be independent of the pressure but this could be lifted to further improve the fit in Fig. 4. [25] CRC Handbook of Chemistry and Physics, edited by D. R. Lide (CRC Press, Boca Raton, FL, 1994), 75th ed. [26] J.W. Chen, M. Huang, Y. H. Li, E. Nakano, and D. L. Yang, arXiv:hep-ph/0709.3434.