Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Smart Cupboard for Assessing Memory in Home Environment

dc.contributor.authorGonzález-Landero, Franks
dc.contributor.authorGarcía-Magariño García, Iván
dc.contributor.authorAmariglio, Rebecca
dc.contributor.authorLacuesta, Raquel
dc.date.accessioned2023-06-17T12:38:34Z
dc.date.available2023-06-17T12:38:34Z
dc.date.issued2019-06-04
dc.description.abstractSensor systems for the Internet of Things (IoT) make it possible to continuously monitor people, gathering information without any extra effort from them. Thus, the IoT can be very helpful in the context of early disease detection, which can improve peoples’ quality of life by applying the right treatment and measures at an early stage. This paper presents a new use of IoT sensor systems—we present a novel three-door smart cupboard that can measure the memory of a user, aiming at detecting potential memory losses. The smart cupboard has three sensors connected to a Raspberry Pi, whose aim is to detect which doors are opened. Inside of the Raspberry Pi, a Python script detects the openings of the doors, and classifies the events between attempts of finding something without success and the events of actually finding it, in order to measure the user’s memory concerning the objects’ locations (among the three compartments of the smart cupboard). The smart cupboard was assessed with 23 different users in a controlled environment. This smart cupboard was powered by an external battery. The memory assessments of the smart cupboard were compared with a validated test of memory assessment about face–name associations and a self-reported test about self-perceived memory. We found a significant correlation between the smart cupboard results and both memory measurement methods. Thus, we conclude that the proposed novel smart cupboard successfully measured memory.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipGobierno de Aragón/FEDER
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67658
dc.identifier.doi10.3390/s19112552
dc.identifier.issn1424-8220
dc.identifier.officialurlhttps://doi.org/10.3390/s19112552
dc.identifier.relatedurlhttps://www.mdpi.com/1424-8220/19/11/2552
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12686
dc.issue.number11
dc.journal.titleSensors
dc.language.isoeng
dc.page.initial2552
dc.publisherMDPI
dc.relation.projectID(TIN2014-57028-R; TIN2017-88327-R; TIN2016-81766-REDT)
dc.relation.projectID(Ref: T49_17R); (Group T25_17D)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordIoT
dc.subject.keywordmemory loss
dc.subject.keyworde-healthcare
dc.subject.keywordAlzheimer’s
dc.subject.keyworddoor sensors
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleSmart Cupboard for Assessing Memory in Home Environment
dc.typejournal article
dc.volume.number19
dspace.entity.typePublication
relation.isAuthorOfPublication8bd0e2f4-8424-4632-9460-07a25b52b64d
relation.isAuthorOfPublication.latestForDiscovery8bd0e2f4-8424-4632-9460-07a25b52b64d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Smart_Cupboard_for_Assessing_Memory_in_Home_Enviro.pdf
Size:
1.87 MB
Format:
Adobe Portable Document Format

Collections