Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Minimal plat representations of prime knots and links are not unique

dc.contributor.authorMontesinos Amilibia, José María
dc.date.accessioned2023-06-21T02:03:00Z
dc.date.available2023-06-21T02:03:00Z
dc.date.issued1976-02-01
dc.description.abstractJ. S. Birman [same J. 28 (1976), no. 2, 264–290] has shown that any two plat representations of a link in S3 are stably equivalent and that stabilization is a necessary feature of the equivalence for certain composite knots. She has asked whether all 2n-plat representations of a prime link are equivalent. The author provides a negative answer, by exhibiting an infinite collection of prime knots and links in S3 in which each element L has at least two minimal and inequivalent 6-plat representations. In addition, as an application of another result of Birman [Knots, groups and 3-manifolds (Papers dedicated to the memory of R. H. Fox), pp. 137–164, Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N.J., 1975], the 2-fold cyclic covering spaces of S3 branched over such links L form further examples of closed, orientable, prime 3-manifolds having inequivalent minimal Heegaard splittings, which were first constructed by Birman, F. González-Acuña and the author [Michigan Math. J. 23 (1976), no. 2, 97–103].
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17266
dc.identifier.doi10.4153/CJM-1976-020-5
dc.identifier.issn0008-414X
dc.identifier.officialurlhttp://cms.math.ca/cjm/v28/cjm1976v28.0161-0167.pdf
dc.identifier.relatedurlhttp://cms.math.ca/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64714
dc.issue.number1
dc.journal.titleCanadian Journal of Mathematics-Journal Canadien de Mathématiques
dc.language.isoeng
dc.page.final167
dc.page.initial161
dc.publisherCanadian Mathematical Society
dc.rights.accessRightsrestricted access
dc.subject.cdu515.14
dc.subject.keywordTopology of general 3-manifolds
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleMinimal plat representations of prime knots and links are not unique
dc.typejournal article
dc.volume.number28
dcterms.referencesJ. S. Birman and H. M. Hilden, On the mapping class group of closed, orientable surfaces as covering spaces, Annals of Math. Studies 66, 81-115. J. S. Birman, On the equivalence of Heegaard splittings of closed, orientable 3-manifolds, Knots, Groups and 3-Manifolds (L. Neuwirth, Editor), Annals of Math. Studies 84 (1975), 137-164. J. S. Birman, F. Gonzalez-Acufïa and J. M. Montesinos, Heegaard splittings of prime 3-manifolds are not unique, to appear, Michigan Math. J. J. S. Birman, Braids, links and mapping class groups, Annals of Math. Studies 82 (1975). J. S. Birman, On the stable equivalence of plat representations of knots and links, to appear, Can. J. Math. R. Engmann, Nicht-hom'ôomorphe Heegaard-Zerlegungen vom Geschlecht 2 der zusammenhdngendem Summe zweier Linsenrâume, Abh. Math. Sem. Univ. Hamburg 35(1970), 33-38. J. M. Montesinos, Sobre la conjetura de Poincaré y los recubridores ramificados sobre un nudo, Tesis doctoral, Madrid, 1971. J. M. Montesinos, Variedades de Seifert que son recubridores ciclicos ramificados de dos hojas, Boletin Soc. Mat. Mexicana 18 (1973), 1-32. K. Reidemeister, Zur dreidimensionalen Topologie, Abh. Math. Sem. Univ. Hamburg 9 (1933), 189-194. H. Seifert, Topologie dreidimensionaler gefaserter Raume, Acta Math. 60 (1933), 147-238. J. Singer, Three dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc. 85 (1933), 88-111. 0. Ja. Viro, Linkings, 2-sheeted branched coverings, and braids, Math. U.S.S.R. Sbornik 16 (1972), 222-236 (English translation). F. Waldhausen, Eine Klasse von 3-dimensionalen Mannigfaltigkeiten II, Invent. Math 4 (1967), 87-117. F. Waldhausen, Uber Involutionen der 3-Sphare, Topology 8 (1969), 81-91.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montesinos25.pdf
Size:
515.53 KB
Format:
Adobe Portable Document Format

Collections