Closed stability index of excellent henselian local rings
dc.contributor.author | Andradas Heranz, Carlos | |
dc.contributor.author | Díaz-Cano Ocaña, Antonio | |
dc.date.accessioned | 2023-06-20T09:31:38Z | |
dc.date.available | 2023-06-20T09:31:38Z | |
dc.date.issued | 2004 | |
dc.description.abstract | We show that the closed stability index of an excellent henselian local ring of real dimension d>2 with real closed residue field is (s) over bar (A) = 1/2d(d+1). When d=2 it is shown that the value of can be either 2 or 3 and give characterizations of each of these values in terms of the relation of A with its normalization and in terms of the real spectrum of A. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGES | |
dc.description.sponsorship | EC | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/14748 | |
dc.identifier.doi | 10.1007/s00209-004-0650-3 | |
dc.identifier.issn | 0025-5874 | |
dc.identifier.officialurl | http://www.springerlink.com/content/ne8894wgrj7qgc00/ | |
dc.identifier.relatedurl | http://www.springerlink.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/49812 | |
dc.issue.number | 1 | |
dc.journal.title | Mathematische Zeitschrift | |
dc.language.iso | eng | |
dc.page.final | 19 | |
dc.page.initial | 1 | |
dc.publisher | Springer | |
dc.relation.projectID | BFM2002-04797 | |
dc.relation.projectID | HPRN-CT-2001-00271 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Closed stability index of excellent henselian local rings | |
dc.type | journal article | |
dc.volume.number | 248 | |
dcterms.references | Andradas, C., Br¨ocker, L., Ruiz, J.: Constructible sets in real geometry. Ergeb. Math. Vol. 33, Springer-Verlag, 1996 Andradas, C., Ruiz, J.: On local uniformization of orderings. AMS Contemp. Math. 155, 19–46 (1994) Becker, E.: On the real spectrum of a ring and its applications to semialgebraic geometry. Bull. Amer. Math. Soc. (N.S.) 15, 19–60 (1986) Bochnak, J., Coste, M., Roy, M.-F.: Real algebraic geometry. Ergeb. Math. Vol. 36, Springer-Verlag, 1998 Br¨ocker, L.: On basic semialgebraic sets. Expo. Math. 9, 289–334 (1991) D´ıaz-Cano, A., Andradas, C.: Stability index of closed semianalytic set germs. Math. Z. 229, 743–751 (1998) D´ıaz-Cano, A.: The t-invariant of analytic set germs of dimension 2. J. Pure Appl. Algebra 160, 157–168 (2001) Guaraldo, F.,Macr`ı, P., Tancredi, A.: Topics on Real analytic spaces.Vieweg:Advanced Lectures in Mathematics, 1986 Lam, T.Y.: An introduction to real algebra. Rocky Mountain J. Math. 14, 767–814 (1984) Matsumura, H.: Commutative algebra. Math. Lecture Note Series 56,Benjamin, 1980 Narasimhan, R.: Introduction to the theory of analytic spaces. Springer-Verlag, 1966 Ruiz, J.: The basic theory of power series. Vieweg: Advanced Lectures in Mathematics, 1993 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | a74c23fe-4059-4e73-806b-71967e14ab67 | |
relation.isAuthorOfPublication | 134ad262-ecde-4097-bca7-ddaead91ce52 | |
relation.isAuthorOfPublication.latestForDiscovery | a74c23fe-4059-4e73-806b-71967e14ab67 |
Download
Original bundle
1 - 1 of 1