Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Closed stability index of excellent henselian local rings

dc.contributor.authorAndradas Heranz, Carlos
dc.contributor.authorDíaz-Cano Ocaña, Antonio
dc.date.accessioned2023-06-20T09:31:38Z
dc.date.available2023-06-20T09:31:38Z
dc.date.issued2004
dc.description.abstractWe show that the closed stability index of an excellent henselian local ring of real dimension d>2 with real closed residue field is (s) over bar (A) = 1/2d(d+1). When d=2 it is shown that the value of can be either 2 or 3 and give characterizations of each of these values in terms of the relation of A with its normalization and in terms of the real spectrum of A.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipDGES
dc.description.sponsorshipEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14748
dc.identifier.doi10.1007/s00209-004-0650-3
dc.identifier.issn0025-5874
dc.identifier.officialurlhttp://www.springerlink.com/content/ne8894wgrj7qgc00/
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49812
dc.issue.number1
dc.journal.titleMathematische Zeitschrift
dc.language.isoeng
dc.page.final19
dc.page.initial1
dc.publisherSpringer
dc.relation.projectIDBFM2002-04797
dc.relation.projectIDHPRN-CT-2001-00271
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleClosed stability index of excellent henselian local rings
dc.typejournal article
dc.volume.number248
dcterms.referencesAndradas, C., Br¨ocker, L., Ruiz, J.: Constructible sets in real geometry. Ergeb. Math. Vol. 33, Springer-Verlag, 1996 Andradas, C., Ruiz, J.: On local uniformization of orderings. AMS Contemp. Math. 155, 19–46 (1994) Becker, E.: On the real spectrum of a ring and its applications to semialgebraic geometry. Bull. Amer. Math. Soc. (N.S.) 15, 19–60 (1986) Bochnak, J., Coste, M., Roy, M.-F.: Real algebraic geometry. Ergeb. Math. Vol. 36, Springer-Verlag, 1998 Br¨ocker, L.: On basic semialgebraic sets. Expo. Math. 9, 289–334 (1991) D´ıaz-Cano, A., Andradas, C.: Stability index of closed semianalytic set germs. Math. Z. 229, 743–751 (1998) D´ıaz-Cano, A.: The t-invariant of analytic set germs of dimension 2. J. Pure Appl. Algebra 160, 157–168 (2001) Guaraldo, F.,Macr`ı, P., Tancredi, A.: Topics on Real analytic spaces.Vieweg:Advanced Lectures in Mathematics, 1986 Lam, T.Y.: An introduction to real algebra. Rocky Mountain J. Math. 14, 767–814 (1984) Matsumura, H.: Commutative algebra. Math. Lecture Note Series 56,Benjamin, 1980 Narasimhan, R.: Introduction to the theory of analytic spaces. Springer-Verlag, 1966 Ruiz, J.: The basic theory of power series. Vieweg: Advanced Lectures in Mathematics, 1993
dspace.entity.typePublication
relation.isAuthorOfPublicationa74c23fe-4059-4e73-806b-71967e14ab67
relation.isAuthorOfPublication134ad262-ecde-4097-bca7-ddaead91ce52
relation.isAuthorOfPublication.latestForDiscoverya74c23fe-4059-4e73-806b-71967e14ab67

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
04.pdf
Size:
293.71 KB
Format:
Adobe Portable Document Format

Collections