Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Closed stability index of excellent henselian local rings

dc.contributor.authorAndradas Heranz, Carlos
dc.contributor.authorDíaz-Cano Ocaña, Antonio
dc.date.accessioned2023-06-20T09:31:38Z
dc.date.available2023-06-20T09:31:38Z
dc.date.issued2004
dc.description.abstractWe show that the closed stability index of an excellent henselian local ring of real dimension d>2 with real closed residue field is (s) over bar (A) = 1/2d(d+1). When d=2 it is shown that the value of can be either 2 or 3 and give characterizations of each of these values in terms of the relation of A with its normalization and in terms of the real spectrum of A.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipDGES
dc.description.sponsorshipEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14748
dc.identifier.doi10.1007/s00209-004-0650-3
dc.identifier.issn0025-5874
dc.identifier.officialurlhttp://www.springerlink.com/content/ne8894wgrj7qgc00/
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49812
dc.issue.number1
dc.journal.titleMathematische Zeitschrift
dc.language.isoeng
dc.page.final19
dc.page.initial1
dc.publisherSpringer
dc.relation.projectIDBFM2002-04797
dc.relation.projectIDHPRN-CT-2001-00271
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleClosed stability index of excellent henselian local rings
dc.typejournal article
dc.volume.number248
dcterms.referencesAndradas, C., Br¨ocker, L., Ruiz, J.: Constructible sets in real geometry. Ergeb. Math. Vol. 33, Springer-Verlag, 1996 Andradas, C., Ruiz, J.: On local uniformization of orderings. AMS Contemp. Math. 155, 19–46 (1994) Becker, E.: On the real spectrum of a ring and its applications to semialgebraic geometry. Bull. Amer. Math. Soc. (N.S.) 15, 19–60 (1986) Bochnak, J., Coste, M., Roy, M.-F.: Real algebraic geometry. Ergeb. Math. Vol. 36, Springer-Verlag, 1998 Br¨ocker, L.: On basic semialgebraic sets. Expo. Math. 9, 289–334 (1991) D´ıaz-Cano, A., Andradas, C.: Stability index of closed semianalytic set germs. Math. Z. 229, 743–751 (1998) D´ıaz-Cano, A.: The t-invariant of analytic set germs of dimension 2. J. Pure Appl. Algebra 160, 157–168 (2001) Guaraldo, F.,Macr`ı, P., Tancredi, A.: Topics on Real analytic spaces.Vieweg:Advanced Lectures in Mathematics, 1986 Lam, T.Y.: An introduction to real algebra. Rocky Mountain J. Math. 14, 767–814 (1984) Matsumura, H.: Commutative algebra. Math. Lecture Note Series 56,Benjamin, 1980 Narasimhan, R.: Introduction to the theory of analytic spaces. Springer-Verlag, 1966 Ruiz, J.: The basic theory of power series. Vieweg: Advanced Lectures in Mathematics, 1993
dspace.entity.typePublication
relation.isAuthorOfPublicationa74c23fe-4059-4e73-806b-71967e14ab67
relation.isAuthorOfPublication134ad262-ecde-4097-bca7-ddaead91ce52
relation.isAuthorOfPublication.latestForDiscoverya74c23fe-4059-4e73-806b-71967e14ab67

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
04.pdf
Size:
293.71 KB
Format:
Adobe Portable Document Format

Collections