Quasi-classical Lie algebras and their contractions

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
After classifying indecomposable quasi-classical Lie algebras in low dimension, and showing the existence of non-reductive stable quasi-classical Lie algebras, we focus on the problem of obtaining sufficient conditions for a quasi-classical Lie algebras to be the contraction of another quasi-classical algebra. It is illustrated how this allows to recover the Yang-Mills equations of a contraction by a limiting process, and how the contractions of an algebra may generate a parameterized families of Lagrangians for pairwise non-isomorphic Lie algebras.
UCM subjects
Unesco subjects
Azcárraga, J. A. de, and Izquierdo, J. M. (1995). Lie Groups, Lie Algebras, Cohomology and some Aplications to Physics, (Cambridge: Cambridge University Press). Bollini, C. G., and Giambigi, J. J. (1984). Zeitschrift der Physik, C22, 257. Bohr, H., and Buchner, K. (1986). Tensor N. S., 43, 66. Boyko, V., Patera, J., and Popovych, R. (2006). Journal of Physics A: Mathematical and General, 39, 5749. Campoamor-Stursberg, R. (2003a). Acta Physica Polonica, B34, 3901. Campoamor-Stursberg, R. (2003b). Journal of Physics A: Mathematical and General, 36, 1357. Campoamor-Stursberg, R. (2004). Physics Letters, A327, 138. Campoamor-Stursberg, R. (2005). Algebra Colloquium, 12, 497. Campoamor-Stursberg, R. (2006). In Oberwolfach Reports, 3, 174. Casimir, H. (1931). Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam, 34, 144. Das, A. (1989). Integrable models, (Singapur: World Scientific). Favre, G., and Santharoubane, L. J. (1987). Journal of Algebra, 105, 451. Goze, M. (1988). In Deformation Theory of Algebras and Structures and Applications, (Amsterdam: Kluwer), p265. Huddleston, P. L. (1978). Journal of Mathematical Physics, 19, 1645. Mundt, E. (1993). Seminar Sophus Lie, 3, 107. Myung, H. C. (1986). Mal’cev admissible algebras, (Boston: Birkhäuser). Nijenhuis, A., and Richardson, R. W. (1966). Bulletin of the American Mathematical Society, 72, 1. Okubo, S. (1979). Hadronic Journal, 3, 1. Okubo, S. (1998). Journal of Physics A: Mathematical and General, 31, 7603. Okubo, S., and Kamiya, N. (2002). Communications in Algebra, 30, 3825. Patera, J., Sharp, R. T., Winternitz, P., and Zassenhaus, H. (1976). Journal of Mathematical Physics, 17, 986. Popov, A. D. (1991). Teoreticheskaya i Matematicheskaya Fizika, 43, 402. Schimming, R., and Mundt, E. (1992). Journal of Mathematical Physics, 33, 4250. Slavnov, A. A., and Faddeev, L. D. (1978). Vvedenie v Kvantovuyu Teoriyu Kalibrovochnykh Polei’, (Moskva: Nauka). Turkowski, P. (1988). Journal of Mathematical Physics, 29, 2139. Turkowski, P. (1992). Linear Algebra and Applications, 171, 197. Trofimov, V. V. (1983). Trudy Semimara po Vektornomu i Tenzornomu Analizu, 12, 84. Weimar-Woods, E. (1996). In Proc. XXI Int. Colloq. Group Theoretical Methods in Physics (Goslar), vol 1, (Singapore: World Scientific), p 132. Weimar-Woods, E. (2000). Reviews in Mathematical Physics, 12, 1505.