Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Segregation induced by inelasticity in a vibrofluidized granular mixture

dc.contributor.authorEnriquez, H.
dc.contributor.authorGodoy, S.
dc.contributor.authorSoto, R.
dc.contributor.authorBrito López, Ricardo
dc.date.accessioned2023-06-20T10:34:47Z
dc.date.available2023-06-20T10:34:47Z
dc.date.issued2008-06
dc.description© American Physical Society. We want to thank J. M. R. Parrondo for very useful comments. R.B. was supported by the Spanish Projects MOSAICO, Contract Nos. FIS2004-271 and UCM/PR34/07-15859. The research was supported by Fondecyt Grant Nos. 1061112, 1070958, and 7070301 and Fondap Grant No. 11980002.
dc.description.abstractWe investigate the segregation of a dense binary mixture of granular particles that only differ in their restitution coefficient. The mixture is vertically vibrated in the presence of gravity. We find a partial segregation of the species, where most dissipative particles submerge in the less dissipative ones. The segregation occurs even if one type of the particles is elastic. In order to have a complete description of the system, we study the structure of the fluid at microscopic scale (few particle diameters). The density and temperature pair distribution functions show strong enhancements with respect to the equilibrium ones at the same density. In particular, there is an increase in the probability that the more inelastic particles group together in pairs (microsegregation). Microscopically the segregation is buoyancy driven, by the appearance of a dense and cold region around the more inelastic particles.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Projects MOSAICO
dc.description.sponsorshipFondecyt
dc.description.sponsorshipFondap
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21277
dc.identifier.doi10.1103/PhysRevE.77.061301
dc.identifier.issn1539-3755
dc.identifier.officialurlhttp://pre.aps.org/pdf/PRE/v77/i6/e061301
dc.identifier.relatedurlhttp://pre.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50631
dc.issue.number6, Par
dc.journal.titlePhysical Review E
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2004-271
dc.relation.projectIDUCM/PR34/07- 15859
dc.relation.projectID1061112
dc.relation.projectID1070958
dc.relation.projectID7070301
dc.relation.projectID11980002
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleSegregation induced by inelasticity in a vibrofluidized granular mixture
dc.typejournal article
dc.volume.number77
dcterms.references1. A. Rosato, K. J. Strandburg, F. Prinz, and R. H. Swendsen, Phys. Rev. Lett. 58, 1038 (1987). 2. A. P. J. Breu, H.-M. Ensner, C. A. Kruelle, and I. Rehberg, Phys. Rev. Lett. 90, 014302 (2003). 3. A. Kudrolli, Rep. Prog. Phys. 67, 209 (2004). 4. D. A. Huerta and J. C. Ruiz-Suárez, Phys. Rev. Lett. 92, 114301 2004; 93, 069901E (2004). 5. M. Schröter, S. Ulrich, J. Kreft, J. B. Swift, and H. L. Swinney, Phys. Rev. E 74, 011307 (2006). 6. D. V. Kharkar, J. J. McCarthy, and J. M. Ottino, Chaos 9, 594 (1999). 7. P. M. Reis and T. Mullin, Phys. Rev. Lett. 89, 244301 (2002). 8. M. P. Ciamarra, A. Coniglio, and M. Nicodemi, Phys. Rev. Lett. 94, 188001 (2005). 9. T. Schnautz, R. Brito, C. A. Kruelle, and I. Rehberg, Phys. Rev. Lett. 95, 028001 (2005). 10. H. A. Makse, S. Havlin, P. R. King, and H. E. Stanley, Nature London 386, 379 (1997). 11. K. M. Hill and J. Kakalios, Phys. Rev. E 49, R3610 (1994). 12. D. A. Sanders, M. R. Swift, R. M. Bowley, and P. J. King, Phys. Rev. Lett. 93, 208002 (2004). 13. L. T. Lui, Michael R. Swift, R. M. Bowley, and P. J. King, Phys. Rev. E 75, 051303 (2007). 14. L. Kondic, R. R. Hartley, S. G. K. Tennakoon, B. Painter, and R. P. Behringer, Europhys. Lett. 61, 742 (2003). 15. D. Serero, I. Goldhirsch, S. H. Noskowick, and M.-L. Tan, J. Fluid Mech. 554, 237 (2006), the case of different restitution coefficients is treated in Sec. 5.1. 16 J. J. Brey, M. J. Ruiz-Montero, and F. Moreno, Phys. Rev. E 73, 031301 (2006). 17. R. D. Wildman and D. J. Parker, Phys. Rev. Lett. 88, 064301 (2002). 18. K. Feitosa and N. Menon, Phys. Rev. Lett. 88, 198301 (2002). 19. D. Paolotti, C. Cattuto, U. Marini Bettolo Marconi, and A. Puglisi, Granular Matter 5, 75 (2003). 20. V. Garzó, Europhys. Lett. 75, 521 2006; e-print arXiv: 0803.2588. 21. R. Soto, Phys. Rev. E 69, 061305 (2004). 22. E. L. Grossman, T. Zhou, and E. Ben-Naim, Phys. Rev. E 55, 4200 (1997). 23. R. Ramírez and R. Soto, Physica A 322, 73 (2003). 24. Ph. A. Martin and J. Piasecki, Europhys. Lett. 46, 613 (1999). 25. A. Barrat, E. Trizac, Granular Matter 4, 57 (2002). 26. B. Meerson, T. Pöschel, and Y. Bromberg, Phys. Rev. Lett. 91, 024301 (2003). 27. I. Pagonabarraga, E. Trizac, T. P. C. van Noije, and M. H. Ernst, Phys. Rev. E 65, 011303 (2001). 28. J. Kolafa, S. Labík, and A. Malijevský, Phys. Chem. Chem. Phys. 6, 2335 (2004); see also http://www.vscht.cz/fcs/ software/hsmd/ for molecular dynamics results of gr. 29. J. F. Lutsko, Phys. Rev. E 63, 061211 (2001). 30. L. Verlet and D. Levesque, Mol. Phys. 46, 969 (1982). 31. N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635 (1969). 32. I. Goldhirsch and G. Zanetti, Phys. Rev. Lett. 70, 1619 (1993).
dspace.entity.typePublication
relation.isAuthorOfPublicationb5d83e4b-6cf5-4cfc-9a1e-efbf55f71f87
relation.isAuthorOfPublication.latestForDiscoveryb5d83e4b-6cf5-4cfc-9a1e-efbf55f71f87

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Brito03libre.pdf
Size:
215.98 KB
Format:
Adobe Portable Document Format

Collections