Application of artificially intelligent systems for the identification of discrete fossiliferous levels

dc.contributor.authorMartín Perea, David Manuel
dc.contributor.authorCourtenay, L.A.
dc.contributor.authorDomingo , M. Soledad
dc.contributor.authorMorales, J.
dc.coverage.spatialeast=-3.714323043823242; north=40.17244640890173; name=Vía Sin Nombre, 28990 Torrejón de Velasco, Madrid, España
dc.date.accessioned2025-11-11T18:26:53Z
dc.date.available2025-11-11T18:26:53Z
dc.date.issued2020-03-11
dc.description.abstractThe separation of discrete fossiliferous levels within an archaeological or paleontological site with no clear stratigraphic horizons has historically been carried out using qualitative approaches, relying on two-dimensional transversal and longitudinal projection planes. Analyses of this type, however, can often be conditioned by subjectivity based on the perspective of the analyst. This study presents a novel use of Machine Learning algorithms for pattern recognition techniques in the automated separation and identification of fossiliferous levels. This approach can be divided into three main steps including: (1) unsupervised Machine Learning for density based clustering (2) expert-in-the-loop Collaborative Intelligence Learning for the integration of geological data followed by (3) supervised learning for the final fine-tuning of fossiliferous level models. For evaluation of these techniques, this method was tested in two Late Miocene sites of the Batallones Butte paleontological complex (Madrid, Spain). Here we show Machine Learning analyses to be a valuable tool for the processing of spatial data in an efficient and quantitative manner, successfully identifying the presence of discrete fossiliferous levels in both Batallones-3 and Batallones-10. Three discrete fossiliferous levels have been identified in Batallones-3, whereas another three have been differentiated in Batallones-10.
dc.description.departmentDepto. de Geodinámica, Estratigrafía y Paleontología
dc.description.facultyFac. de Ciencias Geológicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.statuspub
dc.identifier.citationMartín-Perea, D. M., Courtenay, L. A., Domingo, M. S., & Morales, J. (2020). Application of artificially intelligent systems for the identification of discrete fossiliferous levels. PeerJ, 8, e8767. https://doi.org/10.7717/peerj.8767
dc.identifier.doi10.7717/peerj.8767
dc.identifier.officialurlhttps://doi.org/10.7717/peerj.8767
dc.identifier.relatedurlhttps://peerj.com/articles/8767/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/125989
dc.issue.numbere8767
dc.journal.titlePeerJ Life & Environmental
dc.language.isoeng
dc.publisherPeerJ
dc.relation.projectIDPGC2018-094122-B-100
dc.relation.projectIDBES-2016-079460
dc.relation.projectIDCGL2015-6833-P
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu56
dc.subject.keywordMachine Learning
dc.subject.keywordArchaeological site
dc.subject.keywordPalaeontological site
dc.subject.keywordSpatial data
dc.subject.keywordArchaeostratigraphy
dc.subject.keywordPalaeostratigraphy
dc.subject.keywordBatallones Butte sites
dc.subject.ucmPaleontología
dc.subject.ucmGeología estratigráfica
dc.subject.unesco2416.04 Paleontología de las Plantas
dc.subject.unesco2506.19 Estratigrafía
dc.titleApplication of artificially intelligent systems for the identification of discrete fossiliferous levels
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number8
dspace.entity.typePublication
relation.isAuthorOfPublicationcb6b5c9c-8afe-401a-bfa7-5dd7c301ac93
relation.isAuthorOfPublicationa22acc62-c2b9-4f73-9cdd-575d2c8f93e8
relation.isAuthorOfPublication.latestForDiscoverya22acc62-c2b9-4f73-9cdd-575d2c8f93e8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martín Perea et al. (2020) PEERJ.pdf
Size:
14.11 MB
Format:
Adobe Portable Document Format

Collections