PLA deposition on surface treated magnesium alloy: Adhesion, toughness and corrosion behaviour

Thumbnail Image
Full text at PDC
Publication Date
Muñoz, Marta
Torres, Belén
López, A.J.
Rams, J.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Elsevier Science
Google Scholar
Research Projects
Organizational Units
Journal Issue
This study shows that the use of polylactic acid polymer (PLA) coatings deposited by dip-coating on AZ31 magnesium alloy can increase the integrity of the system and the fracture toughness of magnesium substrates treated by plasma electrolytic oxidation (PEO). This provides a novel and promising use of a multilayered system made of fully biocompatible materials. The maximum adhesion strength value for PLA coatings on AZ31 was >50% higher than the maximum one for AZ31/PEO/PLA, while the maximum bending strain tripled. The limitations observed in the AZ31/PEO system arise from the brittle nature of the oxides formed during PEO treatments; their negative impact is reduced when incorporating a PLA layer that is capable of filling the pores and sealing the cracks of the PEO layer. PLA coatings reduce corrosion of AZ31 and maintain the corrosion protection provided by the PEO treatments. The characteristics of the PLA coatings on AZ31 Mg alloy and on AZ31/PEO systems were evaluated by using a Taguchi design of experiment (DOE) method using the following processing parameters: (i) number of layers, (ii) withdrawal speed and (iii) polymer concentration. The effect of these three degrees of freedom and, the surface treatment has been evaluated with regards to different properties desired for the coatings, i.e., adhesion, thickness, roughness, and corrosion resistance.
A. Alabbasi, S. Liyanaarachchi, M.B. Kannan Polylactic acid coating on a biodegradable magnesium alloy: an in vitro degradation study by electrochemical impedance spectroscopy Thin Solid Films (2012), 10.1016/j.tsf.2012.07.090 View PDFGoogle Scholar [2] X. Li, C.L. Chu, L. Liu, X.K. Liu, J. Bai, C. Guo, F. Xue, P.H. Lin, P.K. Chu Biodegradable poly-lactic acid based-composite reinforced unidirectionally with high-strength magnesium alloy wires Biomaterials (2015), 10.1016/j.biomaterials.2015.01.060 View PDFGoogle Scholar [3] H.R. Bakhsheshi-Rad, E. Hamzah, R. Ebrahimi-Kahrizsangi, M. Daroonparvar, M. Medraj Fabrication and characterization of hydrophobic microarc oxidation/poly-lactic acid duplex coating on biodegradable Mg-Ca alloy for corrosion protection Vacuum, 125 (2016), pp. 185-188, 10.1016/j.vacuum.2015.12.022 ArticleDownload PDFView Record in ScopusGoogle Scholar [4] P. Shi, B. Niu, S. E, Y. Chen, Q. Li Preparation and characterization of PLA coating and PLA/MAO composite coatings on AZ31 magnesium alloy for improvement of corrosion resistance Surf. Coatings Technol. (2015), 10.1016/j.surfcoat.2014.11.069 View PDFGoogle Scholar [5] A. Santos-Coquillat, M. Esteban-Lucia, E. Martinez-Campos, M. Mohedano, R. Arrabal, C. Blawert, M.L. Zheludkevich, E. Matykina PEO coatings design for Mg-Ca alloy for cardiovascular stent and bone regeneration applications Mater. Sci. Eng. C., 105 (2019), Article 110026, 10.1016/j.msec.2019.110026 ArticleDownload PDFView Record in ScopusGoogle Scholar [6] A. Alabbasi, M. Bobby Kannan, C. Blawert Dual layer inorganic coating on magnesium for delaying the biodegradation for bone fixation implants Mater. Lett. (2014), 10.1016/j.matlet.2014.03.094 View PDFGoogle Scholar [7] A. Abdal-Hay, M. Dewidar, J.K. Lim Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants Appl. Surf. Sci. (2012), 10.1016/j.apsusc.2012.08.051 View PDFGoogle Scholar [8] R. Montoya, C. Iglesias, M.L. Escudero, M.C. García-Alonso Modeling in vivo corrosion of AZ31 as temporary biodegradable implants. Experimental validation in rats Mater. Sci. Eng. C. (2014), 10.1016/j.msec.2014.04.033 View PDFGoogle Scholar [9] F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, F. Feyerabend Degradable biomaterials based on magnesium corrosion Curr. Opin. Solid State Mater. Sci. (2008), 10.1016/j.cossms.2009.04.001 View PDFGoogle Scholar [10] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias Magnesium and its alloys as orthopedic biomaterials: a review Biomaterials (2006), 10.1016/j.biomaterials.2005.10.003 View PDFGoogle Scholar [11] P.-R. Cha, H.-S. Han, G.-F. Yang, Y.-C. Kim, K.-H. Hong, S.-C. Lee, J.-Y. Jung, J.-P. Ahn, Y.-Y. Kim, S.-Y. Cho, J.Y. Byun, K.-S. Lee, S.-J. Yang, H.-K. Seok Biodegradability engineering of biodegradable Mg alloys: tailoring the electrochemical properties and microstructure of constituent phases Sci. Rep. (2013), 10.1038/srep02367 View PDFGoogle Scholar [12] Y.B. Wang, X.H. Xie, H.F. Li, X.L. Wang, M.Z. Zhao, E.W. Zhang, Y.J. Bai, Y.F. Zheng, L. Qin Biodegradable CaMgZn bulk metallic glass for potential skeletal application Acta Biomater. (2011), 10.1016/j.actbio.2011.04.027 View PDFGoogle Scholar [13] S. González, E. Pellicer, J. Fornell, A. Blanquer, L. Barrios, E. Ibáñez, P. Solsona, S. Suriñach, M.D. Baró, C. Nogués, J. Sort Improved mechanical performance and delayed corrosion phenomena in biodegradable Mg-Zn-Ca alloys through Pd-alloying J. Mech. Behav. Biomed. Mater. (2012), 10.1016/j.jmbbm.2011.09.014 View PDFGoogle Scholar [14] H.X. Wang, S.K. Guan, X. Wang, C.X. Ren, L.G. Wang In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process Acta Biomater. (2010), 10.1016/j.actbio.2009.12.009 View PDFGoogle Scholar [15] Z. Li, X. Gu, S. Lou, Y. Zheng The development of binary Mg-Ca alloys for use as biodegradable materials within bone Biomaterials (2008), 10.1016/j.biomaterials.2007.12.021 View PDFGoogle Scholar [16] M. Mohedano, B.J.C. Luthringer, B. Mingo, F. Feyerabend, R. Arrabal, P.J. Sanchez-Egido, C. Blawert, R. Willumeit-Römer, M.L. Zheludkevich, E. Matykina Bioactive plasma electrolytic oxidation coatings on Mg-Ca alloy to control degradation behaviour Surf. Coatings Technol. (2017), 10.1016/j.surfcoat.2017.02.050 View PDFGoogle Scholar [17] H.R. Bakhsheshi-Rad, E. Hamzah, M.R. Abdul-Kadir, M. Daroonparvar, M. Medraj Corrosion and mechanical performance of double-layered nano-Al/PCL coating on Mg-Ca-Bi alloy Vacuum (2015), 10.1016/j.vacuum.2015.04.039 View PDFGoogle Scholar [18] X. Lin, L. Tan, Q. Zhang, K. Yang, Z. Hu, J. Qiu, Y. Cai The in vitro degradation process and biocompatibility of a ZK60 magnesium alloy with a forsterite-containing micro-arc oxidation coating Acta Biomater. (2013), 10.1016/j.actbio.2012.12.016 View PDFGoogle Scholar [19] A. Abdal-Hay, M.G. Hwang, J.K. Lim In vitro bioactivity of titanium implants coated with bicomponent hybrid biodegradable polymers J. Sol-Gel Sci. Technol. (2012), 10.1007/s10971-012-2912-6 View PDFGoogle Scholar [20] J.H. Gao, X.Y. Shi, B. Yang, S.S. Hou, E.C. Meng, F.X. Guan, S.K. Guan Fabrication and characterization of bioactive composite coatings on Mg-Zn-Ca alloy by MAO/sol-gel J. Mater. Sci. Mater. Med. (2011), 10.1007/s10856-011-4349-9 View PDFGoogle Scholar [21] F. Brusciotti, D.V. Snihirova, H. Xue, M.F. Montemor, S.V. Lamaka, M.G.S. Ferreira Hybrid epoxy-silane coatings for improved corrosion protection of Mg alloy Corros. Sci. (2013), 10.1016/j.corsci.2012.10.013 View PDFGoogle Scholar [23] G. Wu, J.M. Ibrahim, P.K. Chu Surface design of biodegradable magnesium alloys - a review Surf. Coatings Technol. (2013), 10.1016/j.surfcoat.2012.10.009 View PDFGoogle Scholar [24] S.C. Cifuentes, F. Bensiamar, A.M. Gallardo-Moreno, T.A. Osswald, J.L. González-Carrasco, R. Benavente, M.L. González-Martín, E. García-Rey, N. Vilaboa, L. Saldaña Incorporation of Mg particles into PDLLA regulates mesenchymal stem cell and macrophage responses J. Biomed. Mater. Res. - Part A (2016), 10.1002/jbm.a.35625 View PDFGoogle Scholar [25] L. Xu, A. Yamamoto Colloids and surfaces B: biointerfaces characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating Colloids Surfaces B Biointerfaces, 93 (2012), pp. 67-74, 10.1016/j.colsurfb.2011.12.009 ArticleDownload PDFGoogle Scholar [26] Y. Liu, X. Yin, J. Zhang, S. Yu, Z. Han, L. Ren A electro-deposition process for fabrication of biomimetic super-hydrophobic surface and its corrosion resistance on magnesium alloy Electrochim. Acta, 125 (2014), pp. 395-403, 10.1016/j.electacta.2014.01.135 ArticleDownload PDFView Record in ScopusGoogle Scholar [27] C.H. Ye, Y.F. Zheng, S.Q. Wang, T.F. Xi, Y.D. Li In vitro corrosion and biocompatibility study of phytic acid modified WE43 magnesium alloy Appl. Surf. Sci., 258 (2012), pp. 3420-3427, 10.1016/j.apsusc.2011.11.087 ArticleDownload PDFView Record in ScopusGoogle Scholar [28] G.J. Owens, R.K. Singh, F. Foroutan, M. Alqaysi, C.M. Han, C. Mahapatra, H.W. Kim, J.C. Knowles Sol-gel based materials for biomedical applications Prog. Mater. Sci., 77 (2016), pp. 1-79, 10.1016/j.pmatsci.2015.12.001 ArticleDownload PDFView Record in ScopusGoogle Scholar [29] F. Liu, J. Yu, Y. Song, D. Shan, E.H. Han Effect of potassium fluoride on the in-situ sealing pores of plasma electrolytic oxidation film on AM50 Mg alloy Mater. Chem. Phys., 162 (2015), pp. 452-460, 10.1016/j.matchemphys.2015.06.014 ArticleDownload PDFView Record in ScopusGoogle Scholar [30] Y. Gao, A. Yerokhin, A. Matthews Effect of current mode on PEO treatment of magnesium in Ca- and P-containing electrolyte and resulting coatings Appl. Surf. Sci., 316 (2014), pp. 558-567, 10.1016/j.apsusc.2014.08.035 ArticleDownload PDFView Record in ScopusGoogle Scholar [31] H. Sharifi, M. Aliofkhazraei, G.B. Darband, S. Shrestha A review on adhesion strength of peo coatings by scratch test method Surf. Rev. Lett., 25 (2018), 10.1142/S0218625X18300046 View PDFGoogle Scholar [32] B. Torres, C. Taltavull, A.J. Lopez, M. Campo, J. Rams Al/SiCp and Al11Si/SiCp coatings on AZ91 magnesium alloy by HVOF Surf. Coat. Technol., 261 (2015), pp. 130-140, 10.1016/j.surfcoat.2014.11.045 ArticleDownload PDFView Record in ScopusGoogle Scholar [33] C. Taltavull, A.J. Lopez, B. Torres, A. Atrens, J. Rams Optimisation of the high velocity oxygen fuel (HVOF) parameters to produce effective corrosion control coatings on AZ91 magnesium alloy Mater. Corros., 66 (2015), pp. 423-433, 10.1002/maco.201407982 View PDFView Record in ScopusGoogle Scholar [34] J. Michalska, M. Sowa, M. Piotrowska, M. Widziołek, G. Tylko, G. Dercz, R.P. Socha, A.M. Osyczka, W. Simka Incorporation of Ca ions into anodic oxide coatings on the Ti-13Nb-13Zr alloy by plasma electrolytic oxidation Mater. Sci. Eng. C., 104 (2019), Article 109957, 10.1016/j.msec.2019.109957 ArticleDownload PDFView Record in ScopusGoogle Scholar [35] A. Sobolev, A. Valkov, A. Kossenko, I. Wolicki, M. Zinigrad, K. Borodianskiy Bioactive coating on Ti alloy with high osseointegration and antibacterial Ag nanoparticles ACS Appl. Mater. Interfaces, 11 (2019), pp. 39534-39544, 10.1021/acsami.9b13849 View PDFView Record in ScopusGoogle Scholar [36] V. Dehnavi, B.L. Luan, X.Y. Liu, D.W. Shoesmith, S. Rohani Correlation between plasma electrolytic oxidation treatment stages and coating microstructure on aluminum under unipolar pulsed DC mode Surf. Coatings Technol., 269 (2015), pp. 91-99, 10.1016/j.surfcoat.2014.11.007 ArticleDownload PDFView Record in ScopusGoogle Scholar [37] P. Glaris, J.F. Coulon, M. Dorget, F. Poncin-Epaillard Fluorinated epoxy resin as a low adhesive mould for composite material Compos. Part B Eng., 63 (2014), pp. 94-100, 10.1016/j.compositesb.2014.03.019 ArticleDownload PDFView Record in ScopusGoogle Scholar [38] G. Han, W.E.G. Müller, X. Wang, L. Lilja, Z. Shen Porous titania surfaces on titanium with hierarchical macro- and mesoporosities for enhancing cell adhesion, proliferation and mineralization Mater. Sci. Eng. C., 47 (2015), pp. 376-383, 10.1016/j.msec.2014.11.021 ArticleDownload PDFView Record in ScopusGoogle Scholar [39] Y. Wang, H. Yu, C. Chen, Z. Zhao Review of the biocompatibility of micro-arc oxidation coated titanium alloys Mater. Des., 85 (2015), pp. 640-652, 10.1016/j.matdes.2015.07.086 ArticleDownload PDFView Record in ScopusGoogle Scholar [40] S.H. Ye, Y. Chen, Z. Mao, X. Gu, V. Shankarraman, Y. Hong, V. Shanov, W.R. Wagner Biodegradable zwitterionic polymer coatings for magnesium alloy stents Langmuir, 35 (2019), pp. 1421-1429, 10.1021/acs.langmuir.8b01623 View PDFView Record in ScopusGoogle Scholar [41] E. Matykina, I. Garcia, R. Arrabal, M. Mohedano, B. Mingo, J. Sancho, M.C. Merino, A. Pardo Role of PEO coatings in long-term biodegradation of a Mg alloy Appl. Surf. Sci., 389 (2016), pp. 810-823, 10.1016/j.apsusc.2016.08.005 ArticleDownload PDFView Record in ScopusGoogle Scholar