Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Cohomologically Kähler manifolds with no Kähler metrics.

dc.contributor.authorFernández, Marisa
dc.contributor.authorMuñoz, Vicente
dc.contributor.authorSantisteban, José A.
dc.date.accessioned2023-06-20T18:43:54Z
dc.date.available2023-06-20T18:43:54Z
dc.date.issued2003
dc.description.abstractWe show some examples of compact symplectic solvmanifolds, of dimension greater than four, which are cohomologically Kähler and do not admit Kähler metric since their fundamental groups cannot be the fundamental group of any compact Kähler manifold. Some of the examples that we study were considered by Benson and Gordon (1990). However, whether such manifolds have Kähler metrics was an open question. The formality and the hard Lefschetz property are studied for the symplectic submanifolds constructed by Auroux (1997) and some consequences are discussed.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMCYT
dc.description.sponsorshipResearch Training
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21255
dc.identifier.doi10.1155/S0161171203211327
dc.identifier.issn0161-1712
dc.identifier.officialurlhttp://www.hindawi.com/journals/ijmms/2003/954357/abs/
dc.identifier.relatedurlhttp://www.hindawi.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58459
dc.issue.number52
dc.journal.titleInternational Journal of Mathematics and Mathematical Sciences
dc.language.isoeng
dc.page.final3325
dc.page.initial3315
dc.publisherHindawi Publishing Corporation
dc.relation.projectIDBFM2000-0024
dc.relation.projectIDBFM2001-3778-C03-02.
dc.relation.projectIDHPRN-CT-2000-00101
dc.rights.accessRightsopen access
dc.subject.cdu514
dc.subject.cdu515.1
dc.subject.ucmGeometría
dc.subject.ucmTopología
dc.subject.unesco1204 Geometría
dc.subject.unesco1210 Topología
dc.titleCohomologically Kähler manifolds with no Kähler metrics.
dc.typejournal article
dc.volume.number2003
dcterms.referencesJ. Amorós, M. Burger, K. Corlette, D. Kotschick, and D.Toledo, Fundamental Groups of Compact Kähler Manifolds, Mathematical Surveys and Monographs, vol. 44, American Mathematical Society, Rhode Island, 1996. D. Arapura and M. Nori, Solvable fundamental groups of algebraic varieties and Kähler manifolds, Compositio Math. 116 (1999), no. 2, 173–188. D. Auroux, Asymptotically holomorphic families of symplectic submanifolds,Geom. Funct. Anal. 7 (1997), no. 6, 971–995. L. Auslander, L. Green, and F. Hahn, Flows on Homogeneous Spaces, Annals of Mathematics Studies, no. 53, Princeton University Press, New Jersey, 1963. C. Benson and C. S. Gordon, Kähler and symplectic structures on nilmanifolds,Topology 27 (1988), no. 4, 513–518. Kähler structures on compact solvmanifolds, Proc. Amer. Math. Soc. 108 (1990), no. 4, 971–980. F. Campana, Remarques sur les groupes de Kähler nilpotents [Remarks on nilpotent Kähler groups], Ann. Sci. École Norm. Sup. (4) 28 (1995), no. 3, 307–316 (French). L. A. Cordero, M. Fernández, and A. Gray, Symplectic manifolds with no Kähler structure, Topology 25 (1986), no. 3, 375–380. L. C. de Andrés, M. Fernández, M. de León, and J. J.Mencía, Some six-dimensional compact symplectic and complex solvmanifolds, Rend. Mat. Appl. (7) 12 (1992), no. 1, 59–67. P. Deligne, P. A. Griffiths, J. Morgan, and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), no. 3, 245–274. S. K. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996), no. 4, 666–705. M. Fernández, M. de León, and M. Saralegui, A six-dimensional compact symplectic solvmanifold without Kähler structures, Osaka J. Math. 33 (1996), no. 1, 19–35. M. Fernández and A. Gray, Compact symplectic solvmanifolds not admitting complex structures, Geom. Dedicata 34 (1990), no. 3, 295–299. M. Fernández and V. Muñoz, On the formality and the hard Lefschetz property for Donaldson symplectic manifolds, preprint, 2002, http://arXiv.org/abs/math.SG/0211017. R. E. Gompf, A new construction of symplectic manifolds, Ann. of Math. (2) 142 (1995), no. 3, 527–595. P. A. Griffiths and J. W. Morgan, Rational Homotopy Theory and Differential Forms, Progress in Mathematics, vol. 16, Birkhäuser Boston, Massachusetts,1981. S. Halperin, Lectures on minimal models, Mém. Soc. Math.Fr. (N.S.) (1983), no. 9-10, 261. A. Hattori, Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac.Sci. Univ. Tokyo Sect. IA Math. 8 (1960), 289–331. O. Mathieu, Harmonic cohomology classes of symplectic manifolds, Comment.Math. Helv. 70 (1995), no. 1, 1–9. D. McDuff, Examples of simply-connected symplectic non-Kählerian manifolds, J.Differential Geom. 20 (1984), no. 1,267–277. W. P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math.Soc. 55 (1976), no. 2, 467–468. A. Tralle and J. Oprea, Symplectic Manifolds with no Kähler Structure, Lecture Notes in Mathematics, vol. 1661,Springer-Verlag, Berlin, 1997. A. Weinstein, Lectures on Symplectic Manifolds, Regional Conference Series in Mathematics, no. 29, American Mathematical Society, Rhode Island, 1977.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VMuñoz55.pdf
Size:
558.03 KB
Format:
Adobe Portable Document Format

Collections