Field emission properties of gallium oxide micro- and nanostructures in the scanning electron microscope

dc.contributor.authorLópez, Iñaki
dc.contributor.authorNogales Díaz, Emilio
dc.contributor.authorHidalgo Alcalde, Pedro
dc.contributor.authorMéndez Martín, María Bianchi
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.date.accessioned2023-06-20T03:37:31Z
dc.date.available2023-06-20T03:37:31Z
dc.date.issued2012-01
dc.description© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This work has been supported by MICINN (Projects MAT 2009-07882 and Consolider Ingenio CSD 2009-00013) and by BSCH-UCM (Project GR35-10A-910146). The authors are grateful to Dr Luca Gregoratti at the Sincrotrone Trieste for useful advises on XPS measurements.
dc.description.abstractThe field emission properties of gallium oxide nanowires grown by thermal evaporation-deposition have been investigated inside the chamber of a scanning electron microscope. Turn on electric fields and enhancement factors have been determined for Sn doped nanowires. X-ray photoelectron spectroscopy measurements have been performed to calculate the work function of Sn doped Ga2O3. The results show improved field emission properties of Sn doped Ga2O3 nanowires, with a lower threshold field (below 1.0 V/mu m). The obtained values are competitive with those achieved in other nanostructured materials, including carbon nanotubes.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMICINN
dc.description.sponsorshipBSCH-UCM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/24194
dc.identifier.doi10.1002/pssa.201127406
dc.identifier.issn1862-6300
dc.identifier.officialurlhttp://onlinelibrary.wiley.com/doi/10.1002/pssa.201127406/full
dc.identifier.relatedurlhttp://onlinelibrary.wiley.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44078
dc.issue.number1
dc.journal.titlePhysica Status Solidi A-Applications and Materials Science
dc.language.isoeng
dc.page.final117
dc.page.initial113
dc.publisherWiley-V C H Verlag GMBH
dc.relation.projectIDMAT 2009-07882
dc.relation.projectIDConsolider Ingenio CSD 2009-00013
dc.relation.projectIDGR35-10A-910146
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordGa2o3 Nanowires
dc.subject.keywordThin-Films
dc.subject.keywordBeta-Ga2o3
dc.subject.keywordGrowth
dc.subject.ucmFísica de materiales
dc.titleField emission properties of gallium oxide micro- and nanostructures in the scanning electron microscope
dc.typejournal article
dc.volume.number209
dcterms.references[1] N. S. Xu and S. E. Huq, Mater. Sci. Eng. R 48, 47 (2005). [2] J. Zhou, S. Z. Deng, N. S. Xu, J. Chen, and J. C. She, Appl. Phys. Lett. 83, 2653 (2003). [3] J. Liu, Z. Zhang, Y. Zhao, X. Su, S. Liu, and E. Wang, Small 1, 310 (2003). [4] Y. T. Lin, C. Y. Chen, C. P. Hsiung, K. W. Chang, and J. Y. Gan, Appl. Phys. Lett. 89, 063123 (2006). [5] X. Wang, J. Zhou, C. Lao, J. Song, N. Xu, and Z. L. Wang, Adv. Mater. 19, 1627 (2007). [6] J. Lin, Y. Huang, Y. Bando, C. Yang, C. Li, and D. Goldberg, ACS Nano 4, 2452 (2010). [7] E. Nogales, J. A. Garcı´a, B. Me´ndez, and J. Piqueras, J. Appl. Phys. 101, 033517 (2007). [8] E. Nogales, B. Méndez, and J. Piqueras, Nanotechnology 19, 035713 (2008). [9] E. Nogales, J. A. García, B. Me´ndez, and J. Piqueras, Appl. Phys. Lett. 91, 133108 (2007). [10] Y. Huang, S. Yue, Z. Wang, Q. Wang, C. Shi, Z. Xu, X. D. Bai, C. Tang, and C. Gu, J. Phys. Chem. B 110, 796 (2006). [11] J. Zhan, Y. Bando, J. Hu, Y. Li, and D. Goldberg, Chem. Mater. 16, 5158 (2004). [12] Y. Huang, Z. Wang, Q. Wang, C. Gu, C. Tang, Y. Bando, and D. Goldberg, J. Phys. Chem. C 113, 1980 (2009). [13] C. Cao, Z. Chen, X. An, and H. Zhu, J. Phys. Chem. C 112, 95 (2008). [14] Y. Bayam, V. J. Logeeswaran, A. M. Katzenmeyer, R. J. Chacon, M. C. Wong, C. E. Hunt, and M. Saif Islam, Proceedings 8th IEEE Conference on Nanotechnology (IEEE, Piscataway, NJ, USA, 2008), pp. 573–575. [15] G. Sinha, A. Datta, S. K. Panda, P. G. Chavan, M. A. More, D. S. Joag, and A. Patra, J. Phys. D 42, 185409 (2009). [16] E. Nogales, B. Me´ndez, and J. Piqueras, Appl. Phys. Lett. 86, 113112 (2005). [17] E. Nogales, B. Me´ndez, J. Piqueras, and J. A. García, Nanotechnology 21, 115201 (2009). [18] L. Binet and D. Gourier, J. Phys. Chem. Solids 59, 1241 (1998). [19] M. Orita, H. Ohta, M. Hirano, and H. Hosono, Appl. Phys. Lett. 77, 4166 (2000). [20] T. Minami, T. Miyata, and T. Yamamoto, Surf. Coat. Technol. 108–109, 583 (1998). [21] J. Robertson and B. Falabretti, Mater. Sci. Eng. B 135, 267 (2006). [22] D. Y. Zhong, G. Y. Zhang, S. Liu, T. Sakurai, and E. G. Wang, Appl. Phys. Lett. 80, 506 (2002). [23] J. M. Bonard, K. A. Dean, B. F. Coll, and C. Klinke, Phys Rev. Lett. 89, 197602 (2002).
dspace.entity.typePublication
relation.isAuthorOfPublicationf65096c2-6796-43bf-a661-9e2079b73d1c
relation.isAuthorOfPublicationc834e5a4-3450-4ff7-8ca1-663a43f050bb
relation.isAuthorOfPublication465cfd5b-6dd4-4a48-a6e3-160df06f7046
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscoveryf65096c2-6796-43bf-a661-9e2079b73d1c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MendezBianchi07.pdf
Size:
371.88 KB
Format:
Adobe Portable Document Format

Collections