Atomically Precise Control of Topological State Hybridization in Conjugated Polymers

dc.contributor.authorJiménez Martín, Alejandro
dc.contributor.authorSosnová, Zdenka
dc.contributor.authorSoler, Diego
dc.contributor.authorMallada, Benjamin
dc.contributor.authorGonzález-Herrero, Héctor
dc.contributor.authorEdalatmanesh, Shayan
dc.contributor.authorMartín León, Nazario
dc.contributor.authorEcija, David
dc.contributor.authorJelínek, Pavel
dc.contributor.authorde la Torre, Bruno
dc.date.accessioned2025-05-26T08:11:48Z
dc.date.available2025-05-26T08:11:48Z
dc.date.issued2024-10-15
dc.descriptionWe acknowledge the Research Infrastructure NanoEnviCz, supported by the Ministry of Education, Youth and Sports of the Czech Republic under Project No. LM2023066. B.T. acknowledges the financial support of Czech Science Foundation (project-23-06781M) and from MCIN/AEI/10.13039/501100011033/ERDF/EU (project-PID2022-140845OB-C64). We appreciate funding from the CzechNanoLab Research Infrastructure supported by MEYS CR (LM2018110) and project GACR no. 23-05486S. We acknowledge the support from the ‘(MAD2D-CM)-IMDEA-Nanociencia’ project funded by Comunidad de Madrid, by the Recovery, Transformation and Resilience Plan, and by NextGenerationEU from the European Union. N.M. acknowledges MICIN of Spain for funding the project PID2020-114653RB-I00. H.G.-H. acknowledges financial support from the Spanish State Research Agency under grant Ramon y Cajal fellowship RYC2021-031050-I.
dc.description.abstractRealization of topological quantum states in carbon nanostructures has recently emerged as a promising platform for hosting highly coherent and controllable quantum dot spin qubits. However, their adjustable manipulation remains elusive. Here, we report the atomically accurate control of the hybridization level of topologically protected quantum edge states emerging from topological interfaces in bottom-up-fabricated π-conjugated polymers. Our investigation employed a combination of low-temperature scanning tunneling microscopy and spectroscopy, along with high-resolution atomic force microscopy, to effectively modify the hybridization level of neighboring edge states by the selective dehydrogenation reaction of molecular units in a pentacene-based polymer and demonstrate their reversible character. Density functional theory, tight binding, and complete active space calculations for the Hubbard model were employed to support our findings, revealing that the extent of orbital overlap between the topological edge states can be finely tuned based on the geometry and electronic bandgap of the interconnecting region. These results demonstrate the utility of topological edge states as components for designing complex quantum arrangements for advanced electronic devices.
dc.description.departmentDepto. de Química Orgánica
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipResearch Infrastructure NanoEnviCz (Czech Republic)
dc.description.sponsorshipCzech Science Foundation (Czech Republic)
dc.description.sponsorshipCzechNanoLab Research Infrastructure (Czech Republic)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidad (España)
dc.description.sponsorshipAgencia Estatal de Investigación (España)
dc.description.statuspub
dc.identifier.citationJiménez-Martín, A.; Sosnová, Z.; Soler, D.; Mallada, B.; González-Herrero, H.; Edalatmanesh, S.; Martín, N.; Écija, D.; Jelínek, P.; De La Torre, B. Atomically Precise Control of Topological State Hybridization in Conjugated Polymers. ACS Nano 2024, 18 (43), 29902–29912. https://doi.org/10.1021/acsnano.4c10357.
dc.identifier.doi10.1021/acsnano.4c10357
dc.identifier.officialurlhttps://doi.org/10.1021/acsnano.4c10357
dc.identifier.relatedurlhttps://pubs.acs.org/doi/suppl/10.1021/acsnano.4c10357/suppl_file/nn4c10357_si_001.pdf
dc.identifier.relatedurlhttps://pubs.acs.org/doi/10.1021/acsnano.4c10357
dc.identifier.urihttps://hdl.handle.net/20.500.14352/120458
dc.issue.number43
dc.journal.titleACS Nano
dc.language.isoeng
dc.page.final29912
dc.page.initial29902
dc.publisherACS
dc.relation.projectID23-06781M
dc.relation.projectIDPID2022-140845OB-C64
dc.relation.projectID(MAD2D-CM)-IMDEA-Nanociencia
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114653RB-I00/ES/SINTESIS "BOTTON-UP" DE NANOESTRUCTURAS DE CARBONO: APLICACIONES PARA LA ENERGIA/
dc.relation.projectIDRYC2021-031050-I
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu54
dc.subject.jelL65
dc.subject.keywordTopological quantum phase transition
dc.subject.keywordπ-conjugated polymers
dc.subject.keywordAtomic manipulation
dc.subject.keywordScanning tunneling microscopy
dc.subject.keywordNoncontact atomic force microscopy
dc.subject.ucmQuímica
dc.subject.unesco23 Química
dc.titleAtomically Precise Control of Topological State Hybridization in Conjugated Polymers
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number18
dspace.entity.typePublication
relation.isAuthorOfPublicationbbb2c026-daab-46a1-8b57-fa3cf1a7d41a
relation.isAuthorOfPublication.latestForDiscoverybbb2c026-daab-46a1-8b57-fa3cf1a7d41a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Atomically_Precise_Control.pdf
Size:
12.1 MB
Format:
Adobe Portable Document Format

Collections