Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation

Loading...
Thumbnail Image

Full text at PDC

Publication date

2010

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Mathematical Sciences
Citations
Google Scholar

Citation

Abstract

We continue the analysis started in [3] and announced in [2], studying the behavior of solutions of nonlinear elliptic equations in ε with nonlinear boundary conditions of type , when the boundary of the domain varies very rapidly. We show that if the oscillations are very rapid, in the sense that, roughly speaking, its period is much smaller than its amplitude and the function is of a dissipative type, that is, it satisfies , then the boundary condition in the limit problem is , that is, we obtain a homogeneus Dirichlet boundary condition. We show the convergence of solutions in and norms and the convergence of the eigenvalues and eigenfunctions of the linearizations around the solutions. Moreover, if a solution of the limit problem is hyperbolic (non degenerate) and some extra conditions in are satisfied, then we show that there exists one and only one solution of the perturbed problem nearby.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections