Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Wave-Processing of Long-Scale Information by Neuronal Chains

dc.contributor.authorVillacorta-Atienza, José Antonio
dc.contributor.authorMakarov Slizneva, Valeriy
dc.date.accessioned2023-06-19T13:21:30Z
dc.date.available2023-06-19T13:21:30Z
dc.date.issued2013-02-27
dc.description.abstractInvestigation of mechanisms of information handling in neural assemblies involved in computational and cognitive tasks is a challenging problem. Synergetic cooperation of neurons in time domain, through synchronization of firing of multiple spatially distant neurons, has been widely spread as the main paradigm. Complementary, the brain may also employ information coding and processing in spatial dimension. Then, the result of computation depends also on the spatial distribution of long-scale information. The latter bi-dimensional alternative is notably less explored in the literature. Here, we propose and theoretically illustrate a concept of spatiotemporal representation and processing of long-scale information in laminar neural structures. We argue that relevant information may be hidden in self-sustained traveling waves of neuronal activity and then their nonlinear interaction yields efficient wave-processing of spatiotemporal information. Using as a testbed a chain of FitzHugh-Nagumo neurons, we show that the wave-processing can be achieved by incorporating into the single-neuron dynamics an additional voltage-gated membrane current. This local mechanism provides a chain of such neurons with new emergent network properties. In particular, nonlinear waves as a carrier of long-scale information exhibit a variety of functionally different regimes of interaction: from complete or asymmetric annihilation to transparent crossing. Thus neuronal chains can work as computational units performing different operations over spatiotemporal information. Exploiting complexity resonance these composite units can discard stimuli of too high or too low frequencies, while selectively compress those in the natural frequency range. We also show how neuronal chains can contextually interpret raw wave information. The same stimulus can be processed differently or identically according to the context set by a periodic wave train injected at the opposite end of the chain.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Science and Innovation
dc.description.sponsorshipRussian Ministry of Education and Science
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20650
dc.identifier.doi10.1371/journal.pone.0057440
dc.identifier.issn1932-6203
dc.identifier.officialurlhttp://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0057440
dc.identifier.relatedurlhttp://www.plosone.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33282
dc.issue.number2
dc.journal.titlePlos One
dc.language.isoeng
dc.publisherPUBLIC LIBRARY SCIENCE
dc.relation.projectIDproject FIS2010-20054
dc.relation.projectIDcontract 14.B37.21.1237
dc.rights.accessRightsopen access
dc.subject.cdu612.8
dc.subject.keywordSpreading depression
dc.subject.keyworddiffusion systems
dc.subject.keywordfield potentials
dc.subject.keywordbrain
dc.subject.keywordpropagation
dc.subject.keywordconsciousness
dc.subject.keywordoscillations
dc.subject.keywordcollisions
dc.subject.keywordsolitons
dc.subject.keywordmodel
dc.subject.ucmNeurociencias (Medicina)
dc.subject.unesco2490 Neurociencias
dc.titleWave-Processing of Long-Scale Information by Neuronal Chains
dc.typejournal article
dc.volume.number8
dspace.entity.typePublication
relation.isAuthorOfPublicationa5728eb3-1e14-4d59-9d6f-d7aa78f88594
relation.isAuthorOfPublication.latestForDiscoverya5728eb3-1e14-4d59-9d6f-d7aa78f88594

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Makarov100.pdf
Size:
2.27 MB
Format:
Adobe Portable Document Format

Collections