Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Global dynamics of a system governing an algorithm for regression with censored and non-censored data under general errors

dc.contributor.authorRivero Rodríguez, Carlos
dc.contributor.authorCastillo, Angela
dc.contributor.authorZufiria, Pedro J.
dc.contributor.authorValdés Sánchez, Teófilo
dc.date.accessioned2023-06-20T10:33:24Z
dc.date.available2023-06-20T10:33:24Z
dc.date.issued2004
dc.description.abstractWe present an investigation into the dynamics of a system, which underlies a new estimating algorithm for regression with grouped and nongrouped data. The algorithm springs from a simplification of the well-known EM algorithm, in which the expectation step of the EM is substituted by a modal step. This avoids awkward integrations when the error distribution is assumed to be general. The sequences generated by the estimating procedure proposed here define our objective system, which is piecewise linear. The study tackles the system's asymptotic stability as well as its speed of convergence to the equilibrium point. In this sense, to reduce the speed of convergence, we propose an alternative estimating procedure. Numerical examples illustrate the theoretical results, compare the proposed procedures and analyze the precision of the estimate.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMEC
dc.description.sponsorshipMECyT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20213
dc.identifier.doi10.1016/j.cam.2003.09.048
dc.identifier.issn0377-0427
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0377042703008720
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50495
dc.issue.number2
dc.journal.titleJournal of Computational and Applied Mathematics
dc.language.isoeng
dc.page.final551
dc.page.initial535
dc.publisherElsevier Science Bv
dc.relation.projectIDPB97-0566-C02
dc.relation.projectIDBFM2000-1475
dc.relation.projectIDSEC990402
dc.rights.accessRightsrestricted access
dc.subject.cdu519.2
dc.subject.keywordglobal dynamics
dc.subject.keyworditerative estimation
dc.subject.keywordcensored data
dc.subject.keywordregression
dc.subject.keywordimputation
dc.subject.keywordEM algorithm
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleGlobal dynamics of a system governing an algorithm for regression with censored and non-censored data under general errors
dc.typejournal article
dc.volume.number166
dcterms.referencesD.E. Crawford, Analysis of incomplete life test data on motorettes, Insulation/Circuits 16 (10) (1970) 43–48. A.P.Dempster, N.M.Laird, D.B.Rubin, Maximum likelihood from incomplete data via the EM algorithm, J.Roy. Statist.Soc.B 39 (1977) 1–38. K.Lange, A gradient algorithm locally equivalent to de EM algorithm, J.Roy.Statist.Soc.B 57 (1995) 425–437. D.M.W. Leenaerts, W.M.G. van Bokhoven, Piecewise Linear Modeling and Analysis, Kluwer, Boston, MA, 1998. R.J.A. Little, D.B. Rubin, Statistical Analysis With Missing Data, Wiley, New York, 1987. T.A.Louis, Finding the observed information matrix when using the EM algorithm, J.Roy.Statist.Soc.Ser.B 44 (1982) 226–233. G.J.McLachlan, T.Krishnan, The EM Algorithm and Extensions, Wiley, New York, 1997. I.Meilijson, A fast improvement to the EM algorithm on its own terms, J.Roy.Statist.Soc.Ser.B 51 (1989) 127–138. J.Schmee, G.J.Hahn, A simple method for regression analysis with censored data, Technometrics 21 (1979) 417–432. M.A.Tanner, Tools for Statistical Inference.Observed Data and Data Augmentation Methods, Springer, Berlin, 1993. K.M. Wolter, Introduction to Variance Estimation, Springer, Berlin, 1985.
dspace.entity.typePublication
relation.isAuthorOfPublication57155156-5c76-4da2-9777-5ab79884445c
relation.isAuthorOfPublication.latestForDiscovery57155156-5c76-4da2-9777-5ab79884445c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Teofilo10elsevier.pdf
Size:
491.89 KB
Format:
Adobe Portable Document Format

Collections