Saddle-like, π-conjugated, cyclooctatetrathiophene-based, hole-transporting material for perovskite solar cells
Loading...
Download
Official URL
Full text at PDC
Publication date
2019
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Journal of Materials Chemistry C
Citation
J. Mater. Chem. C, 2019,7, 6656-6663
Abstract
A flexible, saddle-like, π-conjugated skeleton composed of four fused thiophene rings forming a cyclooctatetrathiophene (CoTh) with four triphenylamines (CoTh-TTPA) is presented as a hole-transporting material (HTM) for perovskite solar cells. The new HTM shows a bright red color stemming from a direct conjugation between the TPA groups and the central CoTh scaffold. This results in a charge transfer band due to the combination of the weak acceptor moiety, the CoTh unit, and the electron-donating p-methoxytriphenylamine groups. CoTh-TTPA exhibits a suitable highest-occupied molecular orbital (HOMO) level in relation to the valence band edge of the perovskite, which ensures efficient hole extraction at the perovskite/HTM interface. It has been applied as the HTM in combination with a mixed perovskite ([FAPbI3]0.85[MAPbBr3]0.15) and a state-of-the-art triple cation perovskite ([(FAPbI3)0.87(MAPbBr3)0.13]0.92[CsPbI3]0.08) reaching noticeable light-to-energy conversion efficiencies of 16.3 and 15.9%, respectively. These values are slightly lower than those measured for the benchmark spiro-OMeTAD HTM. The HTM properties have been analyzed by means of photoluminescence and conductivity experiments, which demonstrated a better hole extraction and conductivity for spiro-OMeTAD.