Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Probability-Based Wildfire Risk Measure for Decision-Making

dc.contributor.authorRodríguez Martínez, Adán
dc.contributor.authorVitoriano Villanueva, Begoña
dc.date.accessioned2023-06-17T08:55:56Z
dc.date.available2023-06-17T08:55:56Z
dc.date.issued2020
dc.description.abstractWildfire is a natural element of many ecosystems as well as a natural disaster to be prevented. Climate and land usage changes have increased the number and size of wildfires in the last few decades. In this situation, governments must be able to manage wildfire, and a risk measure can be crucial to evaluate any preventive action and to support decision-making. In this paper, a risk measure based on ignition and spread probabilities is developed modeling a forest landscape as an interconnected system of homogeneous sectors. The measure is defined as the expected value of losses due to fire, based on the probabilities of each sector burning. An efficient method based on Bayesian networks to compute the probability of fire in each sector is provided. The risk measure is suitable to support decision-making to compare preventive actions and to choose the best alternatives reducing the risk of a network. The paper is divided into three parts. First, we present the theoretical framework on which the risk measure is based, outlining some necessary properties of the fire probabilistic model as well as discussing the definition of the event ‘fire’. In the second part, we show how to avoid topological restrictions in the network and produce a computable and comprehensible wildfire risk measure. Finally, an illustrative case example is included.en
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/63194
dc.identifier.citationRodríguez-Martínez, A., Vitoriano, B.: Probability-Based Wildfire Risk Measure for Decision-Making. Mathematics. 8, 557 (2020). https://doi.org/10.3390/math8040557
dc.identifier.doi10.3390/math8040557
dc.identifier.issn2227-7390
dc.identifier.officialurlhttps://doi.org/10.3390/math8040557
dc.identifier.relatedurlhttps://www.mdpi.com/2227-7390/8/4/557/htm
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7548
dc.issue.number4
dc.journal.titleMathematics
dc.language.isoeng
dc.page.initial557
dc.publisherhttps://mdpi.com
dc.relation.projectIDGEO-SAFE (691161)
dc.relation.projectIDMTM2015-65803-R
dc.relation.projectIDCT17/17-CT18/17.
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu519.21
dc.subject.cdu630*43
dc.subject.keywordWildfire management
dc.subject.keywordRisk measure
dc.subject.keywordProbability
dc.subject.keywordBayesian networks
dc.subject.keywordDecision-making
dc.subject.keywordPrescribed burns
dc.subject.keywordFirebreak location
dc.subject.keywordGestión de incendios forestales
dc.subject.keywordToma de decisiones
dc.subject.keywordProbabilidades
dc.subject.keywordRedes bayesianas
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmProbabilidades (Matemáticas)
dc.subject.unesco12 Matemáticas
dc.titleProbability-Based Wildfire Risk Measure for Decision-Makingen
dc.typejournal article
dc.volume.number8
dcterms.references1. Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western US forest wildfire activity. Science 2006, 313, 940–943. 2. Alcubierre, P.C.; Ribau, M.C.; de Egileor, A.L.O.; Bover, M.M.; Kraus, P.D. Prevention of Large Wildfires Using the Fire Types Concept; Generalitat de Catalunya: Barcelona, Spain, 2011. 3. Séro-Guillaume, O.; Margerit, J. Modelling forest fires. Part I: a complete set of equations derived by extended irreversible thermodynamics. Int. J. Heat Mass Transf. 2002, 45, 1705–1722. 4. Belval, E.J.; Wei, Y.; Bevers, M. A stochastic mixed integer program to model spatial wildfire behavior and suppression placement decisions with uncertain weather. Can. J. For. Res. 2016, 46, 234–248. 5. Cova, T.J.; Dennison, P.E.; Kim, T.H.; Moritz, M.A. Setting wildfire evacuation trigger points using fire spread modeling and GIS. Trans. GIS 2005, 9, 603–617. 6. Pultar, E.; Raubal, M.; Cova, T.J.; Goodchild, M.F. Dynamic GIS case studies: Wildfire evacuation and volunteered geographic information. Trans. GIS 2009, 13, 85–104. 7. McCaffrey, S.; Rhodes, A.; Stidham, M. Wildfire evacuation and its alternatives: perspectives from four United States’ communities. Int. J. Wildland Fire 2015, 24, 170–178. 8. Finney, M.A. Design of regular landscape fuel treatment patterns for modifying fire growth and behavior. For. Sci. 2001, 47, 219–228. 9. Price, O.F.; Edwards, A.C.; Russell-Smith, J. Efficacy of permanent firebreaks and aerial prescribed burning in western Arnhem Land, Northern Territory, Australia. Int. J. Wildland Fire 2007, 16, 295–305. 10. Rönnqvist, M.; D’Amours, S.; Weintraub, A.; Jofre, A.; Gunn, E.; Haight, R.G.; Martell, D.; Murray, A.T.; Romero, C. Operations research challenges in forestry: 33 open problems. Ann. Oper. Res. 2015, 232, 11–40. 11. King, K.J.; Bradstock, R.A.; Cary, G.J.; Chapman, J.; Marsden-Smedley, J.B. The relative importance of fine-scale fuel mosaics on reducing fire risk in south-west Tasmania, Australia. Int. J. Wildland Fire 2008, 17, 421–430. 12. Minas, J.P.; Hearne, J.W.; Martell, D.L. A spatial optimisation model for multi-period landscape level fuel management to mitigate wildfire impacts. Eur. J. Oper. Res. 2014, 232, 412–422. 13. León, J.; Reijnders, V.M.; Hearne, J.W.; Ozlen, M.; Reinke, K.J. A Landscape-scale optimisation model to break the hazardous fuel continuum while maintaining habitat quality. Environ. Model. Assess. 2019, 24, 369–379. 14. Penadés-Plà, V.; García-Segura, T.; Yepes, V. Robust Design Optimization for Low-Cost Concrete Box-Girder Bridge. Mathematics 2020, 8, 398. 15. Caballero, J.L. Mathematical Programming with Uncertainty and Multiple Objectives for Sustainable Development and Wildfire Management. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2020. 16. Suffling, R.; Grant, A.; Feick, R. Modeling prescribed burns to serve as regional firebreaks to allow wildfire activity in protected areas. For. Ecol. Manag. 2008, 256, 1815–1824. 17. Preisler, H.K.; Brillinger, D.R.; Burgan, R.E.; Benoit, J. Probability based models for estimation of wildfire risk. Int. J. Wildland Fire 2004, 13, 133–142. 18. Castellnou, M.; Prat-Guitart, N.; Arilla, E.; Larrañaga, A.; Nebot, E.; Castellarnau, X.; Vendrell, J.; Pallàs, J.; Herrera, J.; Monturiol, M.; et al. Empowering strategic decision-making for wildfire management: Avoiding the fear trap and creating a resilient landscape. Fire Ecol. 2019, 15, 31. 19. Wei, Y.; Rideout, D.; Kirsch, A. An optimization model for locating fuel treatments across a landscape to reduce expected fire losses. Can. J. For. Res. 2008, 38, 868–877. 20. Cheng, H.; Hadjisophocleous, G.V. The modeling of fire spread in buildings by Bayesian network. Fire Saf. J. 2009, 44, 901–908. 21. Andrino, D. Three Ways of Generating Terrain with Erosion Features. 2018. Available online: https://github.com/dandrino/terrain-erosion-3-ways (accessed on 14 February 2020). 22. Minas, J.; Hearne, J.; Martell, D. An integrated optimization model for fuel management and fire suppression preparedness planning. Ann. Oper. Res. 2015, 232, 201–215 23. Levchenkov, V. Solution of equations in Boolean algebra. Comput. Math. Model. 2000, 11, 154–163. 24. Ibarrola, P.; Pardo, L.; Quesada, V. Teoría de la Probabilidad; Síntesis: Madrid, Spain, 2010. 25. Russel, S.; Norvig, P. Artificial Intelligence: A Modern Approach; EUA, Prentice Hall: Upper Saddle River, NJ, USA, 2003. 26. Schreiber, J. Pomegranate: Fast and flexible probabilistic modeling in python. J. Mach. Learn. Res. 2017, 18, 5992–5997.
dspace.entity.typePublication
relation.isAuthorOfPublication03243862-8e13-4d32-878b-a8b0f3ae5545
relation.isAuthorOfPublicationefbdfdd4-3d98-4463-813b-73beda8ff1dc
relation.isAuthorOfPublication.latestForDiscovery03243862-8e13-4d32-878b-a8b0f3ae5545

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mathematics-08-00557-v2.pdf
Size:
18.92 MB
Format:
Adobe Portable Document Format

Collections