Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Deep learning and fuzzy logic to implement a hybrid wind turbine pitch control

dc.contributor.authorSierra-García, Jesús Enrique
dc.contributor.authorSantos Peñas, Matilde
dc.date.accessioned2024-09-13T13:52:46Z
dc.date.available2024-09-13T13:52:46Z
dc.date.issued2021-07-19
dc.description.abstractThis work focuses on the control of the pitch angle of wind turbines. This is not an easy task due to the nonlinearity, the complex dynamics, and the coupling between the variables of these renewable energy systems. This control is even harder for floating offshore wind turbines, as they are subjected to extreme weather conditions and the disturbances of the waves. To solve it, we propose a hybrid system that combines fuzzy logic and deep learning. Deep learning techniques are used to estimate the current wind and to forecast the future wind. Estimation and forecasting are combined to obtain the effective wind which feeds the fuzzy controller. Simulation results show how including the effective wind improves the performance of the intelligent controller for different disturbances. For low and medium wind speeds, an improvement of 21% is obtained respect to the PID controller, and 7% respect to the standard fuzzy controller. In addition, an intensive analysis has been carried out on the influence of the deep learning configuration parameters in the training of the hybrid control system. It is shown how increasing the number of hidden units improves the training. However, increasing the number of cells while keeping the total number of hidden units decelerates the training.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.fundingtypeAPC financiada por la UCM
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationSierra-Garcia JE, Santos M. Deep learning and fuzzy logic to implement a hybrid wind turbine pitch control. Neural Computing and Applications. 2022 Jul;34(13):10503-17.
dc.identifier.doidoi.org/10.1007/s00521-021-06323-w
dc.identifier.urihttps://hdl.handle.net/20.500.14352/108133
dc.journal.titleNeural Computing and Applications
dc.language.isoeng
dc.page.final10517
dc.page.initial10503
dc.publisherSpringer
dc.relation.projectIDMCI/AEI/FEDER Project Number RTI2018-094902-B-C21
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordHybrid system
dc.subject.keywordDeep learning
dc.subject.keywordFuzzy control
dc.subject.keywordNeural networks
dc.subject.keywordPitch control
dc.subject.keywordWind turbines
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco3311.02 Ingeniería de Control
dc.titleDeep learning and fuzzy logic to implement a hybrid wind turbine pitch control
dc.typejournal article
dc.volume.number34
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NCA2022.pdf
Size:
2.05 MB
Format:
Adobe Portable Document Format

Collections